14 mars 2024 | International, Terrestre
L3Harris Hawkeye III Lite Delivers High-Data Satcom for the U.S. Army
A new order provides updated terminals for in-field use at the tactical edge.
29 mai 2020 | International, C4ISR
By: Aaron Mehta
WASHINGTON — With artificial intelligence expected to form the backbone of the U.S. military in the coming decades, the Army is launching a trio of new efforts to ensure it doesn't get left behind, according to the head of Army Futures Command.
While speaking at an event Wednesday hosted by the Defense Writers Group, Gen. Mike Murray was asked about areas that need more attention as his command works to modernize the force.
Murray pointed to a change in how the service does long-term planning, as well as two personnel efforts that could pay off in the long run.
The first is something Murray has dubbed “Team Ignite,” which he described as “ad hoc, right now,” with a hope to formalize the process in the future. In essence, this means bringing in the teams that write the concept of operations for the military and having them work next to the technologists driving research and development efforts so that everything is incorporated early.
“It has occurred to me for a long time that when we prepare concepts about how we will fight in the future, they are usually not informed by scientists and what is potentially out there in terms of technology,” Murray said. “And when we invest in technologies, rarely do we consult the concept writers to understand what type of technology will fundamentally change the way we fight in the future.”
In Murray's vision, this means soon there will be “a concept writer saying, ‘If only I could [do something we can't do now], this would fundamentally change the way we would fight,' and a scientist or technologist saying, ‘Well, actually we can, you know, another 10-15 years,' and then vice versa,” he said. “Really using that to drive where we're investing our science and technology dollars, so that in 10 or 15 years we actually can fundamentally change the way we're going to fight.”
The Futures Command chief also laid out two new efforts to seed understanding of AI throughout the force, saying that “a key component of the Army moving more and more into the area of artificial intelligence is the talent that we're going to need in the formation to do that.”
Murray described a ”recently approved” masters program to be run through Carnegie Mellon University, focusing on bringing in “young officers, noncommissioned officers and warrant officers” to teach them about artificial intelligence. The course features four to five months of actual learning in the classroom, followed by five or six months working for the Army's AI Task Force. After that, the officers are sent back the force, bringing with them their AI experience.
Additionally, Murray is in the early stages of standing up what he described as a “software factory” to try and identify individual service members who have some computer skills, pull them out of their normal rotations and give them training on “basic coding skills” before sending them back to the force.
“We're going to need a lot of these types of people. This is just [the] beginning, to seed the Army with the types of talent we're going to need in the future if we're going to take advantage of data, if we're going to take advantage of artificial intelligence in the future,” he said.
14 mars 2024 | International, Terrestre
A new order provides updated terminals for in-field use at the tactical edge.
29 août 2024 | International, C4ISR, Sécurité
Vietnamese human rights group targeted by APT32 hackers in multi-year campaign. Malware used to compromise systems and steal data.
10 octobre 2019 | International, C4ISR
By: Nathan Strout Managing data is the biggest challenge to developing a new space-based sensor layer that would help detect hypersonic weapons, the director of the Missile Defense Agency said Oct. 7. The agency is working toward building the Hypersonic and Ballistic Tracking Space Sensor, a layer of sensors on orbit that would be capable of detecting and tracking hypersonic weapons that the nation's current missile defense architecture was not designed to handle. The new system will be built into the Space Development Agency's constellation of low earth orbit satellites. For Vice Adm. Jon Hill, the director of the agency, designing the sensors for the system is a surmountable engineering issue and evolving commercial launch capabilities mean it will be easy to get the technology to space once its ready. The real challenge is “the passing of track data between different space vehicles and maintaining track and dealing with clutter.” Hypersonic weapons are dimmer than traditional ballistic missiles, making them harder to detect. The sensors will have to be able to remove that clutter, detect the threat and then pass their data to the next LEO sensor, which will pick up the object as it travels around the globe at hypersonic speed. Allowing for that data flow from sensor to sensor is essential to the effective operation of the system. Hill compared the complexity of that data transfer to his time in the Navy, where information had to go between moving vessels, but the data issue with satellites is magnitudes of order more difficult. “When you put yourself on a moving body that's moving, not at 30 knots but at a much higher speed, you know, maintaining the stability of that track, being able to pull the clutter out of it, determining how much you want to process up on orbit versus how much you want to feed down and process on the ground, then how you distribute. Do you distribute directly from the sensor? Do you control the weapon from space? Or do you take it to the ground station and do it there? There [are] different trades, and we'll probably do it differently in a lot of different ways because that adds to the overall resilience of the system,” Hill said speaking at a Center for Strategic and International Studies event October 7. Finding the right answers to those questions will be a priority for the MDA as it works to works to get the system on orbit quickly. “It's going to be a great capability. We just need to get it up there as soon as we can and rapidly proliferate,” Hill said. https://www.c4isrnet.com/battlefield-tech/space/2019/10/09/the-data-challenge-of-space-based-hypersonics-defense/