10 octobre 2024 | International, Terrestre
HII is Awarded $75 Million Contract to Support U.S. Navy Integrated Training Systems
HII has performed similar work for the U.S. Navy for two decades.
7 avril 2023 | International, Terrestre
French armoured truck maker Arquus, specialised in manufacturing high-tech off-road military vehicles, has gone back to producing more low-tech undercarriages for howitzers as the ground war in Ukraine boosts demand for artillery.
10 octobre 2024 | International, Terrestre
HII has performed similar work for the U.S. Navy for two decades.
2 juin 2020 | International, Naval
Imagine the following scenario. Four medium-sized U.S. Navy vessels depart from a port along the United States' coast. There's no crew aboard any of them. About 15 nautical miles off the coast, the four vessels rendezvous, autonomously arranging themselves in a line. Using custom mechanisms, they attach to each other to form a train, except they're in the water and there's no railroad to guide them. In this configuration the vessels travel 6,500 nautical miles across the open ocean to Southeast Asia. But as they approach their destination, they disconnect, splitting up as each unmanned ship goes its own way to conduct independent operations, such as collecting data with a variety of onboard sensors. Once those operations are complete, the four reunite, form a train and make the return journey home. This is the Sea Train, and it may not be as far-fetched as it sounds. The Defense Advanced Research Projects Agency is investing in several technologies to make it a reality. “The goal of the Sea Train program is to be able to develop and demonstrate long-range deployment capabilities for a distributed fleet of medium-sized tactical unmanned vessels,” said Andrew Nuss, DARPA's program manager for Sea Train. “So we're really focusing on ways to enable extended transoceanic transit and long-range naval operations, and the way that we're looking to do that is by taking advantage of some of the efficiencies that we can gain in a system of connected vessels — that's where the name ‘Sea Train' comes from.” According to DARPA, the current security environment has incentivized the Navy and the Marine Corps to move from a small number of exquisite, large manned platforms to a more distributed fleet structure comprised of smaller vessels, including unmanned platforms that can conduct surveillance and engage in electronic warfare and offensive operations. While these unmanned vessels are smaller and more agile than their large, manned companions, they are limited by the increased wave-making resistance that plagues smaller vessels. And due to their size, they simply can't carry enough fuel to make the long-range journeys envisioned by DARPA without refueling. By connecting the vessels — physically or in a formation — the agency hopes the Sea Train can reduce that wave resistance and enable long-range missions. In February, the agency released a broad agency announcement to find possible vendors. Citing agency practice, Nuss declined to share how many proposals were submitted, although he did say there was significant interest in the announcement. The agency completed its review of any submissions and expects to issue contracts by the end of the fiscal year. Sea Train is expected to consist of two 18-month periods, where contractors will work to develop and test technologies that could enable the Sea Train concept. The program will culminate with model testing in scaled ocean conditions. If successful, DARPA hopes to see the technologies adopted by the Navy for its unmanned platforms. “What we're looking to do is be able to reduce the risk in this unique deployment approach,” Ness said. “And then be able to just deliver that set of solutions to the Navy in the future, to be able to demonstrate to them that there is, potentially, a new way to deploy these vessels, to be able to provide far more operational range without the risk of relying on actual refueling or in-port refueling.” And while DARPA's effort is focused on medium-sized unmanned vessels — anywhere from 12 to 50 meters in length — the lessons learned could be applied to larger or smaller vessels, manned or unmanned. https://www.c4isrnet.com/unmanned/2020/06/01/all-aboard-the-sea-train/
5 février 2021 | International, Aérospatial, Naval, C4ISR
Researchers at Stanford University have developed a new type of sonar to overcome the previously insurmountable problem of seeing underwater from the air. Sound does not travel easily between air and water: there is a 65-decibel loss, which means roughly a million-fold decrease in intensity, making it makes it virtually impossible to pick up sound reflections from the air. The new technology can map the seabed and potentially detect mines, submarines and other underwater targets from aircraft. Currently, the only ways of using sonar from aircraft are sonar buoys (sonobuoys) dropped into the water, or dipping sonar lowered to the sea surface from a hovering helicopter. The helicopter cannot move while using dipping sonar, so it has to check one spot, raising the sonar, fly somewhere else, lowering the sonar again, and so on. By contrast, the new Photoacoustic Airborne Sonar System or PASS, developed at Stanford with funding from the U.S. Navy, will work from a moving aircraft. “Our vision of the proposed technology is to capture images continuously as the airborne vehicle flies over the water,” Stanford researcher Aidan Fitzpatrick told Forbes. “Similar to how synthetic aperture radar systems or in-water synthetic aperture sonar systems work today.” https://www.forbes.com/sites/davidhambling/2021/02/04/new-sonar-sees-underwater-from-aircraft/