10 août 2020 | International, Terrestre

Heavy robotic combat vehicles put to test in the Colorado mountains

By:

WASHINGTON — The U.S. Army grappled with the challenge of incorporating heavy robotic combat vehicles into its formations during a monthlong experiment at Fort Carson, Colorado, coming away with a clearer path to bringing robots into the fold. Still, the service is years away from ground robots seamlessly fitting in with units.

The Army has been evaluating the performance and possible utility of heavy RCVs for more than a year through the use of robotic versions of M113 armored personnel carriers, but the experiment at Camp Red Devil on Fort Carson is the most complex to date.

“We're taking a lot of technology, we're experimenting and this experiment was 100 percent successful,” Brig. Gen. Ross Coffman, who is in charge of the Army's combat vehicle modernization efforts, told reporters in an Aug. 6 briefing. “The whole purpose was to learn where the technology is now and how we think we want to fight with it in the future.”

Coffman said that doesn't mean all of the technology was successful or that everything performed perfectly. “Some [technology] knocked our socks off, and some we've got a little bit of work to do. But that is why we do these things, so we can do it at small scales, so we can learn, save money and then make decisions of how we want to fight in the future.”

Going the distance

In part, the Army is tackling a physics problem as well as a technology challenge involving the distance between the robot and the controller, Coffman said. But the service has found companies that can create waveforms to get the required megabytes per second to extend the range in the most challenging environments like dense forested areas, he added.

During the experimentation, Coffman said, the Army tested the waveforms. “We went after them with [electronic warfare], we saw they were self-correcting, so that if they're on one band, they can switch to another,” he said, “so we have a really good idea of what is in the realm of the possible today.”

The service was also able to almost double the range between controller and robot using the waveforms available, he explained. “If you could extend the battlefield up to 2 kilometers with a robot, then that means that you can make decisions before your enemy came, and it gives you that trade space of decisions faster and more effectively against the enemy.”

The Army was also very pleased with the interface for the crew. The soldiers were able to located themselves and the robots, communicate among themselves, and see the graphics that “just absolutely blows us away,” Coffman said.

The software between the robot and control vehicle — a Bradley Infantry Fighting Vehicle — “while not perfect, performed better than we thought it would,” Coffman said.

The software also allowed the robot move in front of the control vehicle by roughly 80-1,000 meters as well as identify hotspots and enemy locations.

“I didn't know how that was going to work,” Coffman said. “There were some challenges that we had, like getting exact granularity at distance, but the ability that we could identify hotspots and enemy positions I thought was absolutely exceptional.”

As a side experiment, the Army also tested a robotic version of the Stryker Dragoon infantry combat vehicle, which is equipped with a 30mm cannon and uses the same software and hardware in control vehicles, Coffman noted. The experiment included live fire.

In the heavy RCV surrogates, the target recognition worked while stationary, but part of the challenge the Army is tackling is how to do that on the move while passing information to a gunner, he added.

Work on stabilizing the system for multiple terrains also needs performed, but that was indicative of using clunky, old M113s and turning them into robots rather than having a purpose-built vehicle like the RCV Medium and RCV Light.

The Army awarded contracts to a Textron and Howe & Howe team to build the RCV-M, and a QinetiQ North America and Pratt & Miller team to build the light version late last year and early this year. Those are being built now.

Training on the system also proved to be much easier than anticipated. Coffman said he asked how long the operators need to train, and was surprised to hear they need roughly 30 minutes to learn. “I thought it was going to take them days, but our soldiers are so amazing and they grew up in this environment of gaming.”

What's the Army's next step?

Now that the first major experiment is done, the Army plans to build up to a company-level operation in the first quarter of fiscal 2022 at Fort Hood, Texas. The experiment will also include four medium RCV prototypes and four light RCVs.

While the experimentation at Fort Carson was focused on cavalry operations where the robots served more in a scout mission and proved they could be effective in a reconnaissance and security role, the experiment in FY22 will move the robots into more of an “attack and defend” role, according to Coffman.

A new radio will be added to increase range as well as a tethered UAV and more leap-ahead target recognition capability that uses algorithms trained on synthetic data that is “truly cutting-edge,” Coffman said.

After each of these experiments, he added, the Army reaches a decision point where it decides how to proceed, whether that is more experimentation or a fielding decision. “We have enough information tactically and technically that I believe we can move forward to the second experiment,” he noted.

Following the second experiment, the Army will reach a decision point in FY23 on whether to move the effort into an official program of record. Once that is decided, an acquisition strategy would be identified if the decision is to move forward, according to Coffman.

https://www.defensenews.com/land/2020/08/07/heavy-robotic-combat-vehicles-put-to-test-in-the-colorado-mountains/

Sur le même sujet

  • AUSA: Highlights from the US Army’s annual conference

    27 octobre 2020 | International, Terrestre, C4ISR

    AUSA: Highlights from the US Army’s annual conference

    WASHINGTON ― Even an ongoing pandemic can't stop the U.S. Army's largest conference. The Association of the United States Army held its annual summit virtually this year from Oct. 13-16. Pentagon officials, service leaders and defense industry representatives gathered online to discuss the state of the Army. This included updates for industry, changes for personnel, ideas for future warfare and plans for tech acquisition. As the service ― really, the military as a whole ― pivots from its counterterror mission to great power competition against advanced adversaries, it's seeking to take a technological leap that will prepare war fighters for the future battlefield. Defense News, Army Times and C4ISRNET attended the webinars. Catch up on some of our best stories from this year's AUSA conference and can find more at defensenews.com/digital-show-dailies/ausa and c4isrnet.com/show-reporter/ausa.

  • Advanced Avionics Computer Introduced for Unmanned Vehicles

    2 mai 2019 | International, Aérospatial

    Advanced Avionics Computer Introduced for Unmanned Vehicles

    Mike Rees GE Aviation has announced the introduction of a new advanced avionics computer specifically built for military and commercial unmanned aerial vehicles (UAVs). This new computer provides an open architecture design that integrates vehicle management and advanced mission processing into a compact, lightweight design. “Our customers have told us that they require an integrated vehicle and mission processing solution that is secure, rugged, low size, weight and power and capable of meeting the needs of demanding autonomous platforms,” said Alan Caslavka, president of Avionics for GE Aviation. “This new system hits it out of the park in this regard and then builds from there in terms of bringing new capabilities to the next generation of unmanned systems.” This new system incorporates the processing power required for mission functions such as sensor processing at the edge and hosting autonomy enabling algorithms and then also embeds an inertial/GPS package, software defined radio, datalink and an optional solid-state storage device. Caslavka added, “The new system incorporates diverse processing that's capable of performing safety critical and non-critical functions while bringing a new level of security to legacy and future platforms.” The system integrates the functionality traditionally provided by up to six separate electronic units into a single package which drives out weight, power, and cost while meeting the security, exportability, ruggedness and processing needs of customers. GE's advanced avionics computer has undergone flight testing and is in use by a number of military and civil customers. The computer incorporates a hardware and software open architecture approach that offers flexibility and scalability. This design also provides the capability to host GE, customer and third-party software applications to maximize its versatility. https://www.unmannedsystemstechnology.com/2019/05/advanced-avionics-computer-introduced-for-unmanned-vehicles/

  • Raytheon Provides Cybersecurity for Global Hawk UAS

    24 janvier 2019 | International, Aérospatial, C4ISR

    Raytheon Provides Cybersecurity for Global Hawk UAS

    Mike Rees Raytheon Company has announced that it will deploy sustainment and cybersecurity experts around the world to support the ground control systems and onboard sensors used by the U.S. Air Force fleet of RQ-4 Global Hawk remotely piloted aircraft. Raytheon Intelligence, Information and Services will perform the work, which includes providing software upgrades to defend against cyber threats, as part of a $65 million subcontract from the aircraft manufacturer, Northrop Grumman. “Raytheon will help these unmanned aircraft meet tomorrow's threats,” said Todd Probert, vice president of Mission Support and Modernization at Raytheon IIS. “We have been improving the Global Hawk fleet's capabilities for 20 years by modernizing their ground and sensor systems and will now ensure their resiliency in the face of cyber threats.” Raytheon previously announced a $104 million effort to modernize the Global Hawk ground segment, moving payload and aircraft operators into mission control buildings. These new stations replace mission control, and launch and recovery elements previously housed in shelters. https://www.unmannedsystemstechnology.com/2019/01/raytheon-provides-cybersecurity-for-global-hawk-uas/

Toutes les nouvelles