9 avril 2024 | International, C4ISR

Harnessing the Power of CTEM for Cloud Security

Tired of chasing endless vulnerabilities? Enter Continuous Threat Exposure Management (CTEM). Prioritize critical exposures, streamline remediation, a

https://thehackernews.com/2024/04/harnessing-power-of-ctem-for-cloud.html

Sur le même sujet

  • Here’s how Air Mobility Command will improve aircraft survivability

    24 septembre 2018 | International, Aérospatial, C4ISR

    Here’s how Air Mobility Command will improve aircraft survivability

    By: Charlsy Panzino In a great power conflict, mobility aircraft will be essential to deliver fuel and supplies to the warfighters. But increasing concern over anti-access/area denial threats from potential foes, and the fact that big bodied mobility aircraft present inviting, in fact, critical targets has the attention and concern of Air Force leadership. The new head of Air Mobility Command is focusing on four key areas to improve the survivability of mobility aircraft and gain persistence over the battlefield. Gen. Maryanne Miller, who took the controls Sept. 7 when Gen. Carlton Everhart retired, told reporters at the Air Force Association's annual Air, Space and Cyber Conference that the Illinois-based command is looking at four categories of survivability improvements: Situational awareness of the battlefield New countermeasures to operate in a combat environment Self-defense systems Disciplined signature management “Looking at each one of these categories will help advance the survivability for our platforms in the threat environment,” Miller said Tuesday. Miller is carrying forward work that was done under her predecessor. Early this year, AMC completed an assessment about how to improve the survivability of aircraft in contested environments. The “High Value Airborne Asset” study recommended improvements to communications, situational awareness and self-protection systems. There are many different technologies to consider and develop for self-protection. including light armor, signature management tech and high-energy lasers. Former AMC commander Gen. Carlton Everhart often talked about his desire to put lasers on mobility aircraft, beginning with the KC-135, and the command has also been working to improve secure communications, notably on the C-17. The service needs integrated situational awareness capabilities that provide all aspects of pertinent battlefield information. New sensors will help the command better understand everything that's happening within the battlefield. As Air Mobility Command looks at how best to build that situational awareness, it could mean building sensors onto the aircraft or new air frames to meet those requirements. “Given the threat environment, it's probably a little bit of both,” Miller said. With signature management, or detection avoidance, Miller said AMC is looking at new air frames that will have common cockpits, advanced propulsion systems, payload, offload, range, speed and fuel efficiency. Miller said the command is figuring out if modifications can be made on current air frames or if new ones need to be built. “We're really trying to take advantage of signature management properties associated with each air frame itself,” she said. Meanwhile, U.S. Transportation Command and the Cost Assessment and Program Evaluation organization within the Office of the Secretary of Defense have been assessing the number of tanker aircraft, airlift aircraft and sealift ships needed to meet future combatant commander requirements. The study, known as the Mobility Capabilities and Requirements Study, is expected to be completed this fall. “America's air refueling fleet is the most stressed of our air mobility forces," Gen. Darren McDew, commander of USTRANSCOM, told the House Armed Services Committee earlier this year. “The combination of an aging fleet, increasing demand, and global tanker distribution puts a significant strain on this scarce national resource.” “Our ability to deploy decisive force is foundational to the National Defense Strategy. The size and lethality of the force is of little consequence if we can't get it where it needs to go when we want it there,” said McDew. The rate of change in technology requires quick innovation to overcome threats, Miller said. The force needs aircraft that are “able to survive, integrate and operate in DoD forces in current and future threat environments.” Miller said the key is understanding the threats of the future and modifying or building a plane that allows the Air Force to operate through that threat environment. https://www.airforcetimes.com/news/your-air-force/2018/09/22/heres-how-air-mobility-command-will-improve-aircraft-survivability

  • QinetiQ wins US Army’s small ground robot competition

    15 mars 2019 | International, Terrestre

    QinetiQ wins US Army’s small ground robot competition

    By: Jen Judson WASHINGTON — The U.S. Army has chosen Waltham, Massachusetts-based QinetiQ North America to produce its new small ground robot following a head-to-head competition with the company's Boston-based neighbor Endeavor Robotics. The serviced awarded a production contract for up to $152 million to QinetiQ on March 11 for its Common Robotic System—Individual or CRS-I program, which is its first small-sized — less than 25 pounds — ground robot program of record, according to an Army statement from Fort Benning, Georgia. Fort Benning is the birth place of the capability requirements for CRS-I. Ultimately, follow-on contracts and options could amount to roughly $400 million for roughly 3,000 robots. Full article: https://www.defensenews.com/land/2019/03/14/qinetiq-wins-armys-small-ground-robot-competition/

  • Raytheon developing microscopic bomb detector

    13 novembre 2019 | International, Sécurité

    Raytheon developing microscopic bomb detector

    Cambridge, Mass., November 12, 2019 /PRNewswire/ - Raytheon (NYSE: RTN) is using synthetic biology science to create a new method for detecting buried explosives, using bacteria as sensors. Under a contract from the U.S. Defense Advanced Research Projects Agency, Raytheon and partner Worcester Polytechnic Institute will program two bacterial strains to monitor ground surfaces for explosive materials. The first strain will detect the presence or absence of explosives buried underground. If the first strain detects explosives, the second strain will produce a glowing light on the ground's surface. Remote cameras or unmanned aerial vehicles can then be used to survey large areas for the telltale luminescence. "We already know that some bacteria can be programmed to be very good at detecting explosives, but it's harder underground," said Allison Taggart, Ph.D. and principal investigator for the Bio Reporters for Subterranean Surveillance program at Raytheon BBN Technologies. "We're investigating how to transport the reporting bacteria to the required depth underground, and then pushing the luminescence up to the surface so it's easily visible." Synthetic biology combines principles of electrical engineering with computer science to modify DNA. The Subterranean Surveillance program is one example in which advances in synthetic biology are being used to develop sensors that can reveal a variety of subterranean phenomena at a distance. "Using bio sensors underground could help us save lives as well as detect threats to air quality and the water supply," Taggart added. "The modular design of the system we're developing will allow us to swap in different components as needed to detect various kinds of threats and contaminants." About Raytheon Raytheon Company, with 2018 sales of $27 billion and 67,000 employees, is a technology and innovation leader specializing in defense, civil government and cybersecurity solutions. With a history of innovation spanning 97 years, Raytheon provides state-of-the-art electronics, mission systems integration, C5I™ products and services, sensing, effects, and mission support for customers in more than 80 countries. Raytheon is headquartered in Waltham, Massachusetts. Follow us on Twitter. Raytheon Company Space and Airborne Systems BBN Technologies Cambridge, Mass. Media Contact Joyce Kuzmin +1.617.873.8120 joyce.kuzmin@raytheon.com SOURCE Raytheon Company View source version on Raytheon: http://raytheon.mediaroom.com/2019-11-12-Raytheon-developing-microscopic-bomb-detector

Toutes les nouvelles