15 août 2023 | International, C4ISR

Exercise Highball showcases land-based maritime strike capability for Defence - APDR

Exercise Highball has successfully concluded in Lancelin, Western Australia with the live fire of long-range land-based rocket artillery against a maritime target.

https://asiapacificdefencereporter.com/exercise-highball-showcases-land-based-maritime-strike-capability-for-defence/

Sur le même sujet

  • Army using simulations to work out networking kinks ahead of Project Convergence 21

    13 octobre 2021 | International, Terrestre

    Army using simulations to work out networking kinks ahead of Project Convergence 21

    The Army's big lesson from Project Convergence 20 was that it's harder to network things together than the service realized.

  • Mixed-reality systems can bring soldier feedback into development earlier than ever before. Here’s how the US Army is using it.

    10 novembre 2020 | International, C4ISR

    Mixed-reality systems can bring soldier feedback into development earlier than ever before. Here’s how the US Army is using it.

    Nathan Strout ABERDEEN PROVING GROUND, Md. — The U.S. Army's Combat Capabilities Development Command has made clear it wants to introduce soldier feedback earlier in the design process, ensuring that new technologies are meeting users' needs. “Within the CCDC, the need to get soldier feedback, to make sure that we're building the appropriate technologies and actually getting after the users' needs is critical,” said Richard Nabors, acting principal deputy for systems and modeling at the command's C5ISR Center (Command, Control, Computers, Communications, Cyber, Intelligence, Surveillance and Reconnaissance). “There's a concerted effort within the C5ISR Center to do more prototyping not just at the final system level ... but to do it at the component level before the system of systems is put together,” he added. But how can the service accomplish that with systems still in development? One answer: virtual reality. The Army's CCDC is testing this approach with its new artificial intelligence-powered tank concept: the Advanced Targeting and Lethality Aided System, or ATLAS. While tank operations are almost entirely manual affairs, ATLAS aims to automate the threat detection and targeting components of a gunner's job, greatly increasing the speed of end-to-end engagements. Using machine-learning algorithms and a mounted infrared sensor, ATLAS automatically detects threats and sends targeting solutions to a touch-screen display operated by the gunner. By touching an image of the target, ATLAS automatically slews the tank's gun to the threat and recommends the appropriate ammunition and response type. If everything appears correct, the gunner can simply pull the trigger to fire at the threat. The process takes just seconds, and the gunner can immediately move on to the next threat by touching the next target on the display. ATLAS could revolutionize the way tank crews operate — at least in theory. But to understand how the system works with real people involved and whether this is a tool gunners want, CCDC needed to test it with soldiers. The Army has set up an ATLAS prototype at Aberdeen Proving Ground in Maryland, and it hopes to conduct a live-fire exercise soon with targets in a field. However, to collect useful feedback, CCDC is giving soldiers a more robust experience with the system that involves multiple engagements and varying levels of data quality. To do this, the command has built a mixed-reality environment. “It gives us the opportunity ... to get the soldiers in front of this system prior to it being here as a soldier touchpoint or using the live system so we get that initial feedback to provide back to the program, to get that soldier-centric design, to get their opinions on the system, be that from how the GUI is designed to some of the ways that the system would operate,” explained Christopher May, deputy director of the C5ISR Center's Modeling and Simulation Division. The virtual world In the new virtual prototyping environment — itself a prototype — users are placed in a 3D world that mimics the gunner station while using a physical controller and display that is a carbon copy of the current ATLAS design. The CCDC team can then feed simulated battlefield data into the system for soldiers to respond to as if they were actually using ATLAS. Like most virtual reality systems, the outside looks less impressive than the rendered universe that exists on the inside. Sitting down at the gunner's seat, the user's vision is enveloped by a trifold of tall blue walls, cutting the individual off from the real world. Directly in front of the chair is a recreation of ATLAS' touch-screen display and a 3D-printed copy of the controller. Putting on the virtual reality headset, the user is immersed in a 3D rendering of the ATLAS prototype's gunner station, but with some real-world elements. “We're leveraging multiple technologies to put this together. So as the operator looks around ... he has the ability to see the hand grips. He also has the ability to see his own hands,” May said. All in all, the mixed-reality environment creates the distinct impression that the user is in the gunner's chair during a real-life engagement. And that's the whole point. It's important to note the virtual reality system is not meant to test the quality of the AI system. While the system populates the virtual battlefield with targets the same way ATLAS would, it doesn't use the targeting algorithm. “We're not using the actual algorithm,” May said. “We're controlling how the algorithm performs.” Switching up the scenarios Another advantage to the mixed-reality environment: The Army can experiment with ATLAS in different vehicles. CCDC leaders were clear that ATLAS is meant to be a vehicle-agnostic platform. If the Army decides it wants ATLAS installed on a combat vehicle rather than a tank — like the current prototype — the CCDC team could recreate that vehicle within the simulated environment, giving users the opportunity to see how ATLAS would look on that platform. “We can switch that out. That's a 3D representation,” May said. “This could obviously be an existing tactical vehicle or a future tactical vehicle as part of the virtual prototype.” But is the virtual reality component really necessary to the experience? After all, the interactions with the ATLAS surrogate take place entirely through the touch screen and the controller, and a soldier could get an idea of how the system works without ever putting on the headset. May said that, according to feedback he's received, the virtual reality component adds that extra level of realism for the soldier. “They thought it added to their experience,” May said. “We've run through a version of this without the mixed reality — so they're just using the touch screens and the grips — and they thought the mixed reality added that realism to really get them immersed into the experience.” “We've had over [40 soldiers] leveraging the system that we have here to provide those early insights and then also to give us some quantitative data on how the soldier is performing,” he added. “So we're looking from a user evaluation perspective: Again, how does the [aided target recognition] system influence the soldier both positively, potentially and negatively? And then what is the qualitative user feedback just of the system itself?” In other words, the team is assessing how soldiers react to the simulated battlefield they are being fed through the mixed reality system. Not only is the team observing how soldiers operate when the data is perfect; it also wants to see how soldiers are impacted when fed less accurate data. Soldiers are also interviewed after using the system to get a sense of their general impressions. May said users are asked questions such as “How do you see this impacting the way that you currently do your operations?” or “What changes would you make based off your use of it?” The virtual prototyping environment is an outgrowth of CCDC's desire to push soldier interactions earlier in the development process, and it could eventually be used for other systems in development. “We're hoping that this is kind of an initial proof of concept that other programs can kind of leverage to enhance their programs as well,” May said. “This is a little bit of a pilot, but I think we can expect that across the C5ISR Center and other activities to spend and work a lot more in this virtual environment,” added Nabors. “It's a great mechanism for getting soldier feedback [and] provides us an opportunity to insert new capabilities where possible.” https://www.c4isrnet.com/artificial-intelligence/2020/11/09/mixed-reality-systems-can-bring-soldier-feedback-into-development-earlier-than-ever-before-heres-how-the-us-army-is-using-it/

  • Saab delivers virtual Gripen E program update

    1 avril 2020 | International, Aérospatial

    Saab delivers virtual Gripen E program update

    by Chris Thatcher The Saab Gripen E test program has surpassed 300 flight hours and the company is preparing to deliver production aircraft to the Swedish Air Force in 2020. “We are proceeding according to plan and are delivering according to our customers' expectations,” Eddy de la Motte, the head of Saab's Gripen E/F business unit, told webinar viewers during a briefing on Mar. 26. The annual update on the Gripen program was moved to an online forum in response to the coronavirus pandemic. Although Sweden has for now adopted a notably different approach to addressing the spread of COVID-19 than its neighbours – most businesses remain open – defence and aerospace journalists and other interested attendees were confined to virtual participation. “Saab is not one of those companies that is feeling immediate consequences because of the situation given a large order backlog and the business model that we use,” said Ellen Molin, head of Business Area Support Services. “We are doing everything we can to work on development and production.” The Gripen E is among three fighter jets contending to replace the Royal Canadian Air Force fleet of CF-188 Hornets. The others are the Lockheed Martin F-35A Lightning II and the Block III Boeing FA-18E/F Super Hornet. The Gripen E is the only one not yet in service. The briefing was an opportunity for Saab to highlight the progress of the flight test program and forthcoming deliveries to the first customers, Sweden and Brazil. The test program now includes six aircraft and will be expanding to two sites this year involving test pilots from Saab, the Swedish defence materiel administration, and the Swedish Air Force. The accelerated test and verification program will be “more efficient,” said de la Motte. “We are now shifting focus to more testing on the tactical systems and the sensors.” Saab had high expectations for the Gripen E's enhanced fused sensor suite and decision-support capabilities before flight testing began, he said. But the Active Electronically-Scanned Array (AESA) radar, passive infrared search and track (IRST) sensor, tailored datalink and multi-function electronic warfare (EW) system “are preforming better than expected.” Testing has also included an electronic jammer pod to complement the internal active EW system, flights with the MBDA Meteor beyond-visual-range air-to-air missile, and firing of the short-range IRIS-T air-to-air missile. The first production aircraft rolled off the line in Linköping, Sweden earlier this year, and the second and third will be delivered to Sweden later in 2020. Among other milestones, Saab turned over the first test aircraft to the Brazilian Air Force in August 2019. Its arrival in Brazil is scheduled for the end of 2020. Brazil has ordered 36 jets, 28 in the single-seat E variant and eight in the two-seat F model. In advance of the Brazilian flight test program and the launch of a Gripen flight test centre in Brazil, Saab has transferred aircraft intellectual property and knowledge to hundreds of Brazilian technicians, test engineers and pilots at its production facility in Linköping. Furthermore, the Gripen Design and Development Centre in Brazil has cut the first metal on the F-model two seat variant, to be delivered in 2023. Saab is also hoping to expand its customer base as the Gripen E enters service. In February, the company demonstrated two of its test aircraft at Pirkkala Air Base in southern Finland as part of the HX Challenge, the first stage of a capability assessment of five aircraft vying to replace the Finnish Air Force fleet of F/A-18 C and D Hornets. The Gripen is up against the Eurofighter Typhoon, Dassault Rafale, Lockheed Martin F-35A and Boeing F/A-18 Super Hornet. The two aircraft were demonstrated alongside a Saab GlobalEye airborne early warning and control platform, a multi-role air, maritime and ground surveillance system based on the Bombardier Global 6000/6500 jet. As part of a package with Finland, Saab is proposing to transfer intellectual property to operate maintenance, repair and overhaul facilities, spares production, final assembly and a development and sustainment centre. “We fully understand the needs of national security and the ability to control critical technology,” said de la Motte. A similar offer is likely to be part of Saab's pitch to Canada when the request for proposals closes on June 30. In March, the company announced a “Gripen for Canada Team” that includes IMP Aerospace & Defence, CAE, Peraton Canada and GE Aviation. De la Motte said the proposal for 88 Gripen E jets would include “high skilled jobs” as well as aircraft and systems built by Canadians. Both de la Motte and Molin emphasized the “smart and cost-efficient support concept inherent in the aircraft design” that now includes the ability to 3D print spare parts for battle damage repair in a forward hangar to allow grounded aircraft to return to a main operating base. That efficiency was underscored by Col Torgny Fälthammar, head of the Gripen program for the Air Staff of the Swedish Air Force (SAF). A former Saab 37 Viggen and Gripen C fighter pilot, he noted the SAF “operates in a domain where the time to react is sometimes very short – the aircraft and systems we face have a very high velocity.” Since Sweden can't field superior numbers, “we have to strive for the best balance between technology, competence and tactics, and having the relevant numbers... [and] we believe we have found that in the Gripen system.” The Gripen E will introduce “high tech, state-of-the-art systems,” he added. But “being a small country, we always have to think about money and affordability.” https://www.skiesmag.com/news/saab-delivers-virtual-gripen-e-program-update

Toutes les nouvelles