22 octobre 2020 | International, Naval, C4ISR

Elta Systems, Hensoldt partner on system to consolidate submarine capabilities

JERUSALEM — Israeli company Elta Systems has partnered with German firm Hensoldt to develop a single piece of technology for submarine masts that combines optics, communications and other sensors.

The Integrated Communication and Surveillance, or ICS, system combines Hensoldt's optical surveillance optronics mast OMS 150 with Elta's expertise in signals intelligence and satellite communications payloads. Elta, a subsidiary of Israel Aerospace Industries, said the product will address the need to combine operational possibilities on one mast while maintaining the submarine's stealth capability.

“The collaboration is part of Elta's new strategy, leveraging our advanced technological experience and know-how accumulated over decades of defense operations. This collaboration will bring value to our customers by offering a unique, cost-effective, compact and high-utility solution,” Elta CEO Yoav Tourgeman said.

The ICS system combines optics, radar warning, and monitoring of GPS and communications with other vessels and units.

“The data gathered in real time can provide the submarine's crew vital information regarding the enemy's exact location and current situation. It is equipped with a SATCOM and Laser system for secure communications,” according to an Elta statement. The system is being rolled out as part of the European maritime trade show Euronaval, which is being held virtually this year due to the coronavirus pandemic.

Brent Sadler, a senior fellow for naval warfare and advanced technology at the Heritage Foundation think tank, said submarine forces are likely to grow in the coming years, which means "the market for periscopes is growing faster than in the recent past.”

“So the trend is to reduce the number of masts you stick out of the water,” he added, "so if you have a periscope and need to do radio communications or listen for hostile radar, better to have that on one mast.”

According to two sources involved with developing the ICS system at Elta, the new integration seeks to provide submariners with additional capabilities that complement a naval task force. The demand for submarines is increasing, and as they performing less missions strictly alone, the subsurface boats need more sensors and communications tools to work with other vessels as well as airborne and ground assets.

Sadler points out that one of the challenges here is not only miniaturizing add-on payloads but also cooling the thermals because these additions and sensors add heat that can be detected.

The traditional dilemma for submariners is performing missions successfully while reamining stealthy, according to Elta naval systems expert and retired Israeli Navy commander Shlomi Dor. “You need a communication mast, and adding an ISR capability with SATCOM on the same periscope — it's the only mast that keeps safety for submarine[s] ... and communicate[s] to task force and headquarters, whoever you need to be in touch with. This mast is a very robust solution that I think will contribute a lot for mission's sake all over the world.”

The integration of the ICS system on the mast can be done in a refit without changes to existing submarine infrastructure, according to Elta. Michael Sela of Elta told Defense News that the system builds on mature and field-proven sensors, and uses the company's expertise in phased array SATCOM antennas and other technology. It is expected to be operational in the near future.

Developments in periscope design, among other technological trends, will impact submarine designs, perhaps making them smaller with taller periscopes, Sadler said. An uptick in submarine purchases means increasing economies of scale that lead to the research and development behind new designs.

But Sadler raised concerns about Elta's parent company, IAI, cooperating with China on civil aviation projects. The West, in particular the United States, has raised the alarm over China's involvement in the defense industrial base. That is also true for potential customers in Asia and Europe, where partnerships with China are being questioned more, he said.

“The capability has a niche and fills market demand, [but] make sure that the China connection [is] addressed.”

https://www.c4isrnet.com/industry/techwatch/2020/10/21/elta-systems-hensoldt-partner-on-system-to-consolidate-submarine-capabilities/

Sur le même sujet

  • How ‘digital twins’ make defense supply chains more resilient

    11 mai 2023 | International, Autre défense

    How ‘digital twins’ make defense supply chains more resilient

    A combination of enabling technologies and analytic capabilities produce a virtual model of a process, system, or object, informed by real-time data.

  • Airborne Triton drone key to Navy’s signal goals, Clapperton says

    13 février 2024 | International, Aérospatial

    Airborne Triton drone key to Navy’s signal goals, Clapperton says

    The autonomous MQ-4C Triton intelligence, surveillance, reconnaissance and targeting drone can fly for more than 24 hours.

  • Here’s who will build and integrate the first hypersonic weapon system prototype

    3 septembre 2019 | International, Terrestre

    Here’s who will build and integrate the first hypersonic weapon system prototype

    By: Jen Judson WASHINGTON — Dynetics Technical Solutions will be the first to manufacture a set of hypersonic glide body prototypes while Lockheed Martin will serve as the weapon system integrator, according to a U.S. Army announcement. The other transaction authority, or OTA, contract awards mark an important step forward in getting a prototype of the Army's Long Range Hypersonic Weapon, or LRHW — capable of flying at five times the speed of sound — that will launch from a mobile ground platform fielded by fiscal 2023. An OTA is a congressionally mandated contracting mechanism that makes it easier to prototype capabilities. The Army's No. 1 modernization priority is Long-Range Precision Fires, and hypersonic development falls into that category. “Delivering hypersonics to a unit of action will provide a critical combat capability for the Army in support of the National Defense Strategy,” Lt. Gen. L. Neil Thurgood, director of hypersonics, directed energy, space and rapid acquisition, said in an Aug. 30 statement. “With a collaborative effort by our partners in industry and the Department of Defense, we will advance this strategic weapon system and fulfill a critical mission for our nation.” Dynetics, based in Huntsville, Alabama, will get $351.6 million to produce the “first commercially manufactured set of prototype Common-Hypersonic Glide Body (C-HGB) systems,” according to the statement. This means the company will get the first crack at building the C-HGB, but it is likely others will subsequently receive awards to learn how to manufacture the C-HGB developed by the federally funded Sandia National Laboratories in an effort to build up the currently nonexistent hypersonic industrial base in the United States. Dynetics and future award winners will work with the lab to learn how to build the C-HGB. As hypersonic missiles become a reality, industry must relearn how to effectively, efficiently and economically produce them. While companies have developed warheads, glide bodies and other components, there is no industrial base equipped to manufacture hypersonic weapons. By giving multiple companies a chance to learn how to build the glide body, the hope is the process will build that vital industrial base. Lockheed Martin will integrate a launcher that can accommodate the C-HGB onto a mobile truck. That contract is worth $347 million. The OTA awards cover the design, integration and production work that will bring about a series of flight tests starting in 2020, which will lead to a fielding of a prototype LRHW battery, consisting of four trucks, launchers, hypersonic missile rounds and a command and control system. The Army is in charge of producing the LRHW C-HGB as part of a collaboration with the other services. "Dynetics has been developing enabling technologies for many years,” Steve Cook, the company's president, said in a statement. “Our team is pleased the Army saw that our highly-skilled engineers and technicians can bring this technology rapidly and affordably to the warfighter.” DTS will lead “a world-class team for the project, including established and proven defense industry contractors” like General Atomics Electromagnetic Systems, Lockheed Martin and Raytheon. “Each of these companies will bring decades of experience and will join science and technological capabilities to make a modern prototype and eventually become a program of record,” Cook said. General Atomics Electromagnetic Systems will provide cable, electrical and mechanical manufacturing. Lockheed will support the manufacturing, assembly, integration, testing, systems engineering and analysis. And as a principal subcontractor, Raytheon will provide its “extensive experience” in advanced hypersonic technology to build control, actuation and power-conditioning sub-assemblies that control flight, and it will help assemble and test the prototype. Lockheed Martin's integration team also includes Dynetics, which will develop launchers with hydraulics, outriggers, power generation and distribution for the ground platform. Other members of Lockheed's team are Integration Innovation Inc., Verity Integrated Systems, Martinez & Turek, and Penta Research. “We believe our relationships offer the Army unmatched expertise and puts us in the best position to deliver this critical capability to the nation," Eric Scherff, vice president for hypersonic strike programs for Lockheed Martin Space, said in a statement. Lockheed Martin's hypersonic strike contract awards already exceed $2.5 billion. The Army plans to deliver a hypersonic missile and launcher to a unit in the fourth quarter of fiscal 2021. The unit will train for an entire year without live rounds, Thurgood said earlier this month at the Space and Missile Defense Symposium in Huntsville, Alabama. He noted that the canisters the unit will use will be filled with cement to match the weight. The first live-round test will take place in FY22 and will be conducted by a battery led by a captain. https://www.defensenews.com/land/2019/08/30/heres-who-will-build-and-integrate-the-first-hypersonic-weapon-system-prototype

Toutes les nouvelles