22 avril 2021 | International, C4ISR

DoD SBIR/STTR Component BAA Open: Defense Advanced Research Projects Agency (DARPA) HR001121S0007-07

The DoD Small Business and Technology Partnerships Office announces the opening of the following Broad Agency Announcement (BAA) topic:
Defense Advanced Research Projects Agency (DARPA), HR001121S0007
• SBIR Topic HR001121S0007-07: "Multi-Wavelength Laser Sources,” published at: https://beta.sam.gov/opp/2e23f6a5e3104da6bf819d31822edb95/view
IMPORTANT DATES:
• May 25, 2021: BAA closes, full proposals must be submitted in DSIP no later than 12:00 p.m. ET
Full topics and instructions are available at the link provided above.

Sur le même sujet

  • Future Missile War Needs New Kind Of Command: CSIS

    7 juillet 2020 | International, Aérospatial

    Future Missile War Needs New Kind Of Command: CSIS

    Integrating missile defense – shooting down incoming missiles – with missile offense – destroying the launchers before they fire again – requires major changes in how the military fights. By SYDNEY J. FREEDBERG JR.on July 07, 2020 at 4:00 AM WASHINGTON: Don't try to shoot down each arrow as it comes; shoot the archer. That's a time-honored military principle that US forces would struggle to implement in an actual war with China, Russia, North Korea, or Iran, warns a new report from thinktank CSIS. New technology, like the Army's IBCS command network – now entering a major field test — can be part of the solution, but it's only part, writes Brian Green, a veteran of 30 years in the Pentagon, Capitol Hill, and the aerospace industry. Equally important and problematic are the command-and-control arrangements that determine who makes the decision to fire what, at what, and when. Today, the military has completely different units, command systems, doctrines, and legal/regulatory authorities for missile defense – which tries to shoot down threats the enemy has already launched – and for long range offensive strikes – which could keep the enemy from launching in the first place, or at least from getting off a second salvo, by destroying launchers, command posts, and targeting systems. While generals and doctrine-writers have talked about “offense-defense integration” for almost two decades, Green says, the concept remains shallow and incomplete. “A thorough implementation of ODI would touch almost every aspect of the US military, including policy, doctrine, organization, training, materiel, and personnel,” Green writes. “It would require a fundamental rethinking of terms such as ‘offense' and ‘defense' and of how the joint force fights.” Indeed, it easily blurs into the even larger problem of coordinating all the services across all five domains of warfare – land, sea, air, space, and cyberspace – in what's known as Joint All-Domain Operations. The bifurcation between offense and defense runs from the loftiest strategic level down to tactical: At the highest level, US Strategic Command commands both the nation's nuclear deterrent and homeland missile defense. But these functions are split between three different subcommands within STRATCOM, one for Air Force ICBMs and bombers (offense), one for Navy ballistic missile submarines (also offense), and one for Integrated Missile Defense. In forward theaters, the Army provides ground-based missile defense, but those units – Patriot batteries, THAAD, Sentinel radars – belong to separate brigades from the Army's own long-range missile artillery, and they're even less connected to offensive airstrikes from the Air Force, Navy, and Marine Corps. The Navy's AEGIS system arguably does the best job of integrating offense and defense in near-real-time, Green says, but even there, “different capabilities onboard a given ship can come under different commanders,” one with the authority to unleash Standard Missile interceptors against incoming threats and the other with the authority to fire Tomahawk missiles at the enemy launchers. This division of labor might have worked when warfare was slower. But China and Russia have invested massively in their arsenals of long-range, precision-guided missiles, along with the sensors and command networks to direct them to their targets. So, on a lesser scale, have North Korea and Iran. The former deputy secretary of defense, Bob Work, warned of future conflicts in which “salvo exchanges” of hundreds of missiles – hopefully not nuclear ones – might rocket across the war zone within hours. It's been obvious for over a decade that current missile defense systems simply can't cope with the sheer number of incoming threats involved, which led the chiefs of the Army and Navy to sign a famous “eight-star memo” in late 2014 that called, among other things, for stopping enemy missiles “left of launch.” But that approach would require real-time coordination between the offensive weapons, responsible for destroying enemy launchers, command posts, and targeting systems, and the defensive ones, responsible for shooting down whatever missiles made it into the air. While Navy Aegis and Army IBCS show some promise, Green writes, neither is yet capable of moving the data required among all the users who would need it: Indeed, IBCS is still years away from connecting all the Army's defensive systems, while Aegis only recently gained an offensive anti-ship option, a modified SM-6, alongside its defensive missiles. As two Army generals cautioned in a recent interview with Breaking Defense, missile defense and offense have distinctly different technical requirements that limit the potential of using a single system to run both. There are different legal restrictions as well: Even self-defense systems operate under strict limits, lest they accidentally shoot down friendly aircraft or civilian airliners, and offensive strikes can easily escalate a conflict. Green's 35-page paper doesn't solve these problems. But it's useful examination of how complex they can become. https://breakingdefense.com/2020/07/future-missile-war-needs-new-kind-of-command-csis/

  • The US Navy’s modernization rush must not harm mine countermeasures

    11 mai 2020 | International, Naval

    The US Navy’s modernization rush must not harm mine countermeasures

    By: Rep. Rob Wittman As the world continues to grapple with the COVID-19 pandemic, we are reminded that even in a time of unprecedented technological growth and development, simple and primitive threats have the ability to radically alter our way of life. In spite of astonishing medical advancements, some threats, unfortunately, remain timeless. Many people have drawn comparisons between the current coronvirus pandemic and the Spanish flu pandemic of 1918. The Spanish flu was caused by an H1N1 virus that was first identified in the United States in military personnel in the spring of 1918. It would eventually infect one-third of the global population, killing approximately 675,000 people in the United States and an estimated 50 million people worldwide. All of this was happening in the midst of the “war to end all wars” — World War I. While the homeland was battling the flu pandemic, the U.S. Navy was battling the U-boat threat in the Atlantic. In World War I, German submarines sank almost 5,000 ships, most of them merchant vessels. To help counter the U-boat threat, the United States and the United Kingdom embarked on an unprecedented and ambitious project: the construction of the North Sea Mine Barrage — a 230-mile-long underwater barrier of sea mines stretching from Aberdeen, Scotland, to Ekersund, Norway. The effort was a marvel of modern manufacturing, producing 1,000 sea mines every day. Over five months, the allies eventually laid over 70,000 sea mines, helping to contain the U-boat threat and protect allied shipping. As a second wave of the flu pandemic raged across the globe, World War I finally came to an end in November 1918. The American and British navies now had the task of cleaning up 70,000 live sea mines in the unforgiving North Sea. These primitive mines were anchored to the bottom of the sea, and the U.S. and U.K. had the advantage of knowing precisely where they were located because they had laid them. Despite those advantages, it took 82 ships and over 4,000 men — 10 times the assets that were required to lay the mines — to clean up the North Sea Mine Barrage. After almost a year of mine-clearing efforts, the operation was declared complete. Navy studies would later reveal that only approximately 40 percent of the American mines had actually been cleared, and mines continued to wash ashore for years after the end of the war. Fast forward a century and sea mines have proliferated around the world. Since the end World War II, sea mines have damaged or sunk four times as many U.S. Navy ships as any other method of attack. U.S. adversaries have paid attention. Russia was a pioneer in mine warfare and is estimated to have as many as 250,000 sea mines in its inventory. China is not far behind, with an inventory of around 100,000, including some of the world's most advanced mines. China has hundreds of mine-capable ships and aircraft, and could deploy thousands of mines a day during a conflict. To counter the mine threat, the U.S. Navy relies on 11 wooden-hulled Avenger-class mine countermeasures ships, 31 MH-53E Sea Dragon helicopters and a handful of explosive ordnance disposal platoons. The Navy wants to retire both the Avengers and Sea Dragons by 2025, while efforts to field any replacement capability have continued to falter. While the U.S. Navy has focused its research and funding on countering emerging threats such as advanced radars and hypersonic missiles, a time-tested threat waits patiently in the waters around the globe; and if we ignore the lessons of history, a centuries-old technology could lead to our defeat. Mine warfare, like public health, is an area that rarely attracts attention or significant investment until a crisis emerges. We should not wait until American lives are in peril before we take action. We need to change course immediately. First, the Navy must maintain its existing mine countermeasures forces until a credible replacement is fielded. Second, the Navy must make a significant investment to recapitalize the mine countermeasures force both in time and quantity to deliver a credible force. Unfortunately, the Navy has spent billions of dollars and wasted precious years pursuing a mine countermeasure module program that, even if it worked as advertised, would have neither the capability nor the capacity to effectively counter an enemy mine threat anticipated in our National Defense Strategy. Whether it's a pandemic or a proliferated naval threat, our citizens expect the United States to respond effectively, and we must make the necessary investments to counter the threats to our nation and our Navy. https://www.defensenews.com/opinion/commentary/2020/05/08/the-us-navys-modernization-rush-must-not-harm-mine-countermeasures/

  • Kratos Receives $37.7 Million Skyborg Program Contract Award from USAF Advanced Aircraft Office

    9 décembre 2020 | International, Aérospatial

    Kratos Receives $37.7 Million Skyborg Program Contract Award from USAF Advanced Aircraft Office

    San Diego, December 8, 2020 (GLOBE NEWSWIRE) -- Kratos Defense & Security Solutions, Inc. (NASDAQ: KTOS), a leading National Security Solutions provider and industry-leading provider of high-performance, jet-powered unmanned aerial systems, announced today that Kratos has received a $37,771,577 award from the AFLCMC/WA Advanced Aircraft Program Executive Office for the Skyborg Delivery Order (DO) 2 contract to integrate, test, and deliver XQ-58A Valkyrie aircraft. Steve Fendley, President of Kratos Unmanned Systems Division, said, “Kratos is excited to announce the receipt of the Skyborg DO 2 contract, meeting a long-term strategic objective. The Skyborg Program, one of three USAF Vanguard Programs, is focused on expanding the envelope of the application of unmanned aircraft use, particularly with respect to Artificial Intelligence. Kratos XQ-58A has been flying since March of 2019, approximately 30 months after aircraft conception, and was designed specifically for these applications and the ability to support missions from ISR to Strike in manned-unmanned teaming scenarios or in unmanned only mission sets. These capabilities are intended to substantially increase the effectiveness of our country's military mission sets, while at the same time reducing risk to the exquisite assets and manned elements—saving resources and, most importantly, lives.” The contract includes three phases of design, integration, and flight testing of the Kratos XQ-58A Valkyrie system, integrating multiple customer-defined mission payloads and customer-defined autonomy in coordination/cooperation with the Skyborg System Design Agent company, Leidos. Kratos currently works in partnership with Leidos' Dynetics on the Gremlins Program. About Kratos Defense & Security Solutions Kratos Defense & Security Solutions, Inc. (NASDAQ:KTOS) develops and fields transformative, affordable technology, platforms and systems for United States National Security related customers, allies and commercial enterprises. Kratos is changing the way breakthrough technology for these industries are rapidly brought to market through proven commercial and venture capital backed approaches, including proactive research and streamlined development processes. At Kratos, affordability is a technology, and we specialize in unmanned systems, satellite communications, cyber security/warfare, microwave electronics, missile defense, hypersonic systems, training, combat systems and next generation turbo jet and turbo fan engine development. For more information, please visit www.KratosDefense.com. Notice Regarding Forward-Looking Statements Certain statements in this press release may constitute “forward-looking statements” within the meaning of the Private Securities Litigation Reform Act of 1995. These forward-looking statements are made on the basis of the current beliefs, expectations and assumptions of the management of Kratos and are subject to significant risks and uncertainty. Investors are cautioned not to place undue reliance on any such forward-looking statements. All such forward-looking statements speak only as of the date they are made, and Kratos undertakes no obligation to update or revise these statements, whether as a result of new information, future events or otherwise. Although Kratos believes that the expectations reflected in these forward-looking statements are reasonable, these statements involve many risks and uncertainties that may cause actual results to differ materially from what may be expressed or implied in these forward-looking statements. For a further discussion of risks and uncertainties that could cause actual results to differ from those expressed in these forward-looking statements, as well as risks relating to the business of Kratos in general, see the risk disclosures in the Annual Report on Form 10-K of Kratos for the year ended December 29, 2019, and in subsequent reports on Forms 10-Q and 8-K and other filings made with the SEC by Kratos. Press Contact: Yolanda White 858-812-7302 Direct Investor Information: 877-934-4687 investor@kratosdefense.com View source version on Kratos Defense & Security Solutions, Inc.: https://ir.kratosdefense.com/news-releases/news-release-details/kratos-receives-377-million-skyborg-program-contract-award-usaf

Toutes les nouvelles