9 janvier 2019 | International, Terrestre

Contract Awards by US Department of Defense - January 8, 2019

DEFENSE LOGISTICS AGENCY

McRae Industries Inc.,* Mt. Gilead, North Carolina, has been awarded a maximum $9,934,688 modification (P00014) exercising the fourth one-year option period of one-year base contract (SPE1C1-15-D-1023) with four one-year option periods for hot-weather flame resistant combat boots. This is a firm-fixed-price, indefinite-delivery/indefinite-quantity contract. Location of performance is North Carolina, with a Jan. 8, 2020, performance completion date. Using customer is Army. Type of appropriation is fiscal 2019 defense working capital funds. The contracting activity is the Defense Logistics Agency Troop Support, Philadelphia, Pennsylvania.

*Small business

https://dod.defense.gov/News/Contracts/Contract-View/Article/1726571/source/GovDelivery/

Sur le même sujet

  • Remotely Piloted Aircraft: Implications for Future Warfare

    30 janvier 2020 | International, Aérospatial

    Remotely Piloted Aircraft: Implications for Future Warfare

    By Lt. Col. Johnny Duray When an MQ-1 Predator fired an AGM-114 Hellfire missile in the opening stage of Operation Enduring Freedom over Afghanistan, the world discovered a new form of power projection: kinetic force delivered from unmanned, remotely piloted aircraft (RPA). That proof of concept drove exponential growth in RPA usage, with combat air patrols (CAPs) swelling from just four in 2004 to 65 simultaneous, worldwide CAPs every day in 2014. Yet there is still more work to be done to fully realize the power of RPA technology. As the new US national defense strategy focuses on an era of great power competition, RPAs will provide valuable capabilities and capacity to address the persistent threat posed by violent extremist organizations. In doing so, RPAs will also allow other portions of America's air arsenal to focus on near-peer competitor challenges. Achieving this goal requires a new vector for the use of RPAs, as illustrated in the vignettes that follow. Though details have been obscured for operational sensitivity, the narratives and lessons remain largely intact. The Camp Strike. Graphic: Mike Tsukamoto and Dash Parham/staff View or download this infographic The Camp Strike In one recent RPA mission, intelligence sources helped the US military discover a remote jihadi training facility. Plans called for eliminating the radicals with airpower. Leaders initially sought bomber aircraft for the strike, which required scheduling and positioning refueling aircraft, obtaining overflight clearances, and coordinating for personnel recovery—all time- and resource-intensive factors that didn't apply to the RPAs already providing persistent ISR overhead, as explained in RAND publication Armed and Dangerous? UAVs and US Security. When bombers proved unavailable, a four-ship formation of fighter aircraft was requested. This option necessitated an even more robust support structure, as the fighters needed to forward deploy closer in theater. This also required a massive undertaking involving the movement of support personnel and equipment, despite the fact that multiple armed MQ-9 aircraft were already conducting daily surveillance and intelligence missions in the vicinity of the camp. Two environmental factors introduced further complexity into this mission. First, the camp was embedded deep inside a canyon with a valley floor only 15 feet wide. Any air-launched weapons would need to be precisely aimed to strike the narrow space between the canyon walls. Second, the jihadis were broken up into two distinct groups, two to three miles apart. A first-run attack would require delivery of simultaneous effects. Re-attacks on survivors would need to be conducted expeditiously. Once the bomber and fighter options proved unavailable, leaders finally selected four MQ-9 Reapers to execute the mission. Reaper One, Reaper Two, and Reaper Three were flown by squadrons in the same location, while Reaper Four was flown by a squadron at a separate location. The first three Reaper crews planned, briefed, and executed as a formation, or flight, bringing the geographically separated Reaper Four into the planning as much as possible before execution. The four Reapers were equipped with two 500-pound GBU-12 laser-guided bombs and 16 air-to-ground Hellfire missiles. Reaper One teamed with Reaper Four to make a run on the first target group, dropping the 500-pound bombs. Once established inbound, Reaper One passed an estimated “bombs-on-target” time to Reaper Two and Reaper Three, which targeted the second group of terrorists-in-training with four Hellfire missiles in order to achieve simultaneous effects. The synchronicity was near perfect. Weapons impacts from the bombs on the first group and the Hellfires on the second group were within a second of each other. The four MQ-9s hit two separate target sets with six munitions on four different aimpoints with a time on target calculation formulated as the mission progressed, based on outside clearance authority. Reaper Two and Reaper Three teamed up to immediately re-attack the survivors. Prior planning, internal communication, and near-real-time data sharing enabled an unprecedented display of efficiency. RPA pilots physically located together can speak into each other's headsets without delay on an intercom channel, for example. Reaper Three rifled off all four of its Hellfires on three separate re-attacks in under seven minutes. In one instance, Reaper Three fired a Hellfire on a group of terrorists without ever having even seen it, since Reaper Two had tracked the group and provided final weapons guidance for Reaper Three's missile. Reaper One and Reaper Four were left to conduct re-attacks as solo aircraft, since they lacked the prerequisites for the seamless integration enjoyed by Reapers Two and Three. As such, they were only able to employ three of their available eight Hellfires in the first 16 minutes following the initial strike. The final attack was conducted two hours later when Reaper Three found a group of eight enemy combatants hiding in a small ravine. Out of munitions, Reaper Three talked the crew of Reaper Four on to the group. The terrain only allowed a window of approximately 20 seconds for an MQ-9 to provide final guidance onto the target before becoming masked by rocks. Reaper Four shot a Hellfire into the ravine, target unseen, while Reaper Three came in from the opposite direction, crested the terrain, and timed the aircraft's positioning so that final guidance was placed on the enemy group in the last 10 seconds of the missile's flight. By the conclusion of the mission, some 85 percent of the combatants were killed with the other 15 percent wounded. Camp Strike Lessons Learned Some of the lessons from this operation: The MQ-9 Reaper delivers unique capabilities in combat. The Reaper's slow airspeed permits more time to strike targets in steep or inaccessible terrain, while supersonic fighters and bombers permit only brief execution windows before sensors and targeting capabilities are masked. Nevertheless, the training required to take advantage of this capability is akin to the demands for manned aircraft crews. The range and effectiveness of present-day RPA strikes is possible because of the robust training, US Air Force Weapons School caliber planning, and RPA technological advances made since 2001. Remotely piloted aircraft provide synergistic effects when employed together as a flight. The idea of operating RPAs in a flight is still new. Operational planners typically task the closest RPA available just prior to the execution of a complex strike, requiring extensive coordination among the participants. But an RPA flight generates synergistic effects, just like manned aircraft, through a mutual understanding of responsibilities and a shared awareness of the battlespace. This is best cultivated through extensive prestrike planning and briefing, along with real-time information sharing during execution. Bringing together single aircraft from separate squadrons just before a mission ignores the lessons of airpower history in the name of convenience. Decentralized execution is fundamental to successful RPA application. RPAs present an unprecedented opportunity for “reach-in.” With unparalleled observation and communication capabilities, commanders at all levels have violated the long-held tenet of decentralized airpower execution and exerted direct control. Focus on platforms rather than effects stifles RPA operations. The fluid, dynamic nature of kinetic engagements demands mission-command orders that rely on tactical expertise and the situational awareness of those employing the aircraft. Yet effects are what matter in operations, not platforms. As long as commanders tie specific aircraft to specific missions, rather than desired effects, RPAs will continue to be underutilized. RPA aircrews routinely participate in operational planning sessions where the ability to position fighters overhead to provide close air support (CAS) is deemed a “go/no-go” factor by ground and air planners alike. When queried to elaborate on desired effects, ground force representatives routinely reply that they want airpower to assist in “breaking contact with the enemy” to facilitate a return to safety. Although a flight of MQ-9s armed with a dozen Hellfire missiles and a few 500-pound bombs could achieve this effect, planners continue to revert to their default understanding that only aircraft with an A-, F-, or B-designation can provide effective CAS. The 15-Second Window. Graphic: Mike Tsukamoto and Dash Parham/staff Vignette: The 15-Second Window As part of global counterterrorism operations, US and coalition forces tracked a senior terrorist leader several years ago. After extensive study, a concept of operations (CONOPS) developed to facilitate a strike on this individual within an incredibly tight window—the time it took for him to ride his motorcycle to his home, after departing from a main road but before entering a courtyard near his residence. This strike window lasted only about 15 seconds. This broke down into two problems: First, successfully positioning a shooting aircraft within a 15-second engagement window within seven seconds of the target departing the main road, and second, planning around a fork in the main road that afforded the target two options. Route A was simple—there were no further intersections before the target left the main road and entered the engagement window. Route B was more nuanced, with one additional intersection before the target left the main road. The shooting aircraft would need to maneuver to get into position before the target hit the additional intersection. If the target was held up for even a few seconds, it could throw off timing and negate all previous planning. Three MQ-9s were allocated for the strike. Reaper One took the lead and began timing calculations to maneuver into position. Reaper Two followed the target motorcycle as it traveled toward the engagement site. Data sharing allowed Reaper One to position itself within the 15 second window at precisely the time the motorcycle turned off the main road and came into the field of view (FOV). Reaper Three stared at the additional intersection along Route B. Reaper One was able to view Reaper Three's feed to determine the possibility of the target getting held up at that intersection should he travel along Route B. As events unfolded, the target chose to continue down Route B. Updates on the target's distance and speed from Reaper Two and the intersection traffic from Reaper Three enabled Reaper One to successfully maneuver the aircraft into the 15-second window, fire, and eliminate the target with no collateral damage. 15-Second Lessons Learned The success of this strike was made possible by a flight-focused operations approach, paired with an intensive training program, and truly decentralized execution. It also introduced three new areas to reflect on. Data-sharing brings asymmetrical advantages to bear in modern warfare. The strike on the senior terrorist was heavily reliant on real-time data sharing between aircrews, which allowed the flight to get inside the adversary's decision loop and reorient quicker than the adversary. Risk acceptance enables rapid advancement. The rapid acceleration of software (and some hardware) enhancements have enabled RPA airmen to execute kinetic engagements that would not have been proposed just five or six years ago. These capabilities were largely possible because the RPA community's close working relationship with industry allowed it to accept imperfect solutions in the name of accelerated capability. Tactical oversight offers enhanced RPA capabilities. The ability of an MQ-9 squadron to place additional personnel in a ground control station (GCS) to support a traditional two-person crew transforms what that aircraft can bring to bear in combat. This tactical oversight boosts the capability of the crew, elevating success rates for complex engagements. This is especially important, since in modern operations, the MQ-9 pilot has neither a flight lead nor an experienced aircraft commander to rely on for decision- making, in most cases as a result of years of surging RPA demand. The Attempted Rescue. Graphic: Mike Tsukamoto and Dash Parham/staff Vignette: The Attempted Rescue On one calm, moonless night a few years ago, a small group of US special operations forces parachuted from a transport aircraft on a hostage rescue mission. Overhead, three MQ-9s and a U-28 manned ISR aircraft provided support to the SOF team from insertion, through the rescue operation, and the exfiltration. The three MQ-9s were co-located and operated out of the same RPA operations center, where a small staff stood up to support the three flying crews. As the SOF team worked its way toward the hostage's reported location, it became apparent to the RPA operations center director that key real-time intelligence was taking too long to get to the ground forces via the joint operations center (JOC)—the main mission hub. The MQ-9 elements overhead had direct radio contact with ground forces and, more importantly, instant access to the intelligence as well. After a quick discussion about transferring responsibility from JOC leadership to the MQ-9 pilots, the time frame for essential intelligence processing to ground forces went from a minute to under five seconds. A U-28 aircrew member was prepositioned inside the ROC to provide subject-matter expertise on the ISR aircraft, as well as techniques, tactics, and procedures to the MQ-9 crews and ROC staff. Unfortunately, as the team arrived at the location, it discovered that the hostage had been moved from the village just prior to the raid. However, the event offered a real-world opportunity to explore several underutilized capabilities that RPAs and the operations center could apply to future missions. Attempted Rescue Lessons Learned RPAs' ability to port talent into any cockpit at any time is unprecedented in the history of airpower. Because of the physical setup of the ground stations that operate RPAs, any individual can “enter” the airplane while airborne. In this example, a U-28 expert was brought in to assist with airborne integration. Airborne integration could also be extended to fighters, bombers, and any number of other assets. Ground forces could send delegates to a ROC to educate and enable integration between RPAs and supported surface elements. RPA operations centers are uniquely positioned to fuse and disseminate information. These centers allow operational directors to seamlessly communicate face-to-face with the aircrews that provide a majority of the center's data. It is the equivalent of a combined forces air component commander (CFACC)—while in charge of an AOC—being able to jump into the cockpit of any manned aircraft under his authority. Additionally, the land-based setup of the GCS enables an RPA cockpit to connect to modern combat untethered by bandwidth and connectivity limitations that plague most airborne manned aircraft. The Way Forward for Air Force RPAs These three vignettes provide substantial food for thought about how RPAs expand the flexibility and capability of air component commanders. This leads to four critical implications that policy makers, DOD leaders, and Air Force officials should consider: Reconsider airpower force posture in the fight against violent extremist organizations. In light of changing national priorities and finite resources, it is imperative to find ways to sustain the counter-extremist mission in a more cost-effective manner. The cost of employing fighter or bomber aircraft is so much greater than MQ-9s that it should be self-evident. MQ-9 RPAs provide cost-effective capability that can assume many of the mission sets now prosecuted by high-end aircraft in today's counter-terror missions. Redeploying the majority of American high-end fighter and bomber aircraft back to their home bases prolongs their service life and generates valuable aircrew training hours to recapture depleted high-end skills. Investment in information-sharing will bring transformational advantages. As a whole, the US military must tear down parochial walls and allow information between disparate elements of hard power—tanks, ships, aircraft, infantry, and other forces—to flow more freely. The successful execution of the time-sensitive targeted strike on a terrorist leader described above was made possible by the rapid exchange of information between platforms. Unfortunately, this type of interconnectivity is sporadic between air assets even within the same US military service, and even worse among multi-domain assets from other services. Investment in RPA infrastructure is necessary to better share data and information with other systems, services, and the rest of DOD's network. Airmen must understand and articulate appropriate command and control (C2) relationships for RPAs. To fully realize the potential of present and future RPAs in combat, airmen must oppose any effort to centralize execution and challenge command structures that fail to place airmen in positions where their “air-mindedness” could maximize the Air Force's contribution to joint operations. In other words, airmen should influence airpower decisions at all levels of warfare. RPAs offer unprecedented opportunities for outside “reach-in” during tactical execution—and while senior commanders have indeed attempted to control all sorts of tactical elements, from aircraft positioning, to weapons placement, to camera field-of-view, this type of centralized execution stifles RPA aircrews from successfully exploiting fluid operational situations. Expand RPAs mission sets to include close air support. MQ-9 capabilities and tactics have reached a stage where planners need to rethink allocation for key missions, especially close air support. RPAs have transformed both the amount of firepower they bring to bear on the battlefield and the speed at which this ordnance can be delivered. Despite this, the MQ-9 is still predominantly regarded across the Air Force as an ISR asset, and rarely incorporated into CAS scenarios. According to one Air and Space Power Journal article, a mission ISR plan “is completed on a different timeline by different people in a different division in the [Air and Space Operations Center] and published in a different document. If CAS and ISR integrate, they do so by luck.” While not all CAS scenarios are appropriate for MQ-9s, military planners should embrace an effects-based perspective and try to minimize platform-centric bias. Remotely piloted aircraft and their associated operations centers present an ideal platform for entry-level multi-domain exploitation and rapid acquisition trials. Compared with traditional aircraft, RPA cockpits offer a prodigious amount of space and connectivity. Limited only by bandwidth and imagination, RPA offer unique opportunities to take advantage of multi-domain exploitation and use rapid acquisition capabilities to further the state-of-the-art. In current combat operations, the Air Force's MQ-9 is as different from its Operation Enduring Freedom-era 2001 MQ-1 forbearer as an F-16 is from a P-51. However, this transformation has collided with cultural differences rooted in traditional notions of force employment—both in the air and on the ground. This has led to sub-optimal utilization and investment considerations. Today, fighters and bombers are no longer the only option for mass strike, and RPAs are no longer just airborne sniper rifles. RPAs can effectively conduct CAS, particularly with small ground team elements like SOF units. These two considerations alone should cause US military leaders to rethink American force posture for the fight against violent extremist organizations. Remotely piloted aircraft operations are ripe for exploitation with centralized execution, yet “mission-type tactics”—where operational outcomes are emphasized more than any specific means of achieving them—are a central tenet to maximizing RPA potential. Continued investment in the RPA community is crucial to building on the momentum these assets are gathering in operations around the world. This will require harnessing information-sharing through open system architectures. The United States' continued prosecution of low-intensity conflicts around the world, and the need to prepare for potential near-peer military confrontations, both benefit from an agile, decentralized, and well-connected RPA force whose lethality is intelligently incorporated into joint force operational planning. Military leaders with a commanding grasp on RPA capabilities and a willingness to think beyond traditional aircraft mission sets, will be best positioned to take full advantage of every capability RPA can bring to bear in future combat. Air Force Lt. Col. John D. Duray is a senior pilot with more than 3,200 flight hours in the MQ-9 and U-28 and extensive experience in combat and combat support missions. He has supported Operations Iraqi Freedom, Enduring Freedom, Inherent Resolve, and Freedom's Sentinel, and deployed to four different areas of responsibility. The opinions and assessments expressed in this article are the author's alone and do not reflect those of the Department of Defense or the US Air Force. This article is adapted from a forum paper published by the Mitchell Instititue for Aerospace Studies. https://www.airforcemag.com/article/remotely-piloted-aircraft-implications-for-future-warfare/

  • The tiny tech lab that put AI on a spyplane has another secret project

    15 février 2021 | International, Aérospatial

    The tiny tech lab that put AI on a spyplane has another secret project

    By: Valerie Insinna WASHINGTON — It started as a dare. When Will Roper, then the Air Force's top acquisition official, visited Beale Air Force Base in California last fall, he issued a challenge to the U-2 Federal Laboratory, a five-person organization founded in October 2019. The team was established to create advanced technologies for the venerable Lockheed Martin U-2 spyplane, and Roper wanted to push the team further. “He walked into the laboratory and held his finger out and pointed directly at me,” recalled Maj. Ray Tierney, the U-2 pilot who founded and now leads the lab. “He said, ‘Ray, I got a challenge.' We didn't even say hello.” Roper, a string theorist turned reluctant government bureaucrat who was known for his disruptive style and seemingly endless references to science-fiction, wanted the team to update the U-2′s software during a flight. It was a feat the U.S. military had never accomplished, but to Tierney's exasperation, Roper wanted only to know how long it would take for the lab to pull off. The answer, it turns out, was two days and 22 hours. A month later, in mid-November, Roper laid out a second challenge: Create an AI copilot for the U-2, a collection of algorithms that would be able to learn and adapt in a way totally unlike the mindlessness of an autopilot that strictly follows a preplanned route. That task took a month, when an AI entity called Artuμ (pronounced Artoo, as in R2-D2 of Star Wars fame) was given control of the U-2′s sensors and conveyed information about the location of adversary missile launchers to the human pilot during a live training flight on Dec. 15. Now, the U-2 Federal Laboratory is at work again on another undisclosed challenge. Tierney and Roper declined to elaborate on the task in interviews with Defense News. But Roper acknowledged, more broadly, that a future where AI copilots regularly fly with human operators was close at hand. “Artuμ has a really good chance of making it into operations by maybe the summer of this year,” Roper told Defense News before his Jan. 20 departure from the service. “I'm working with the team on how aggressive is the Goldilocks of being aggressive enough? The goal is fairly achievable, but still requires a lot of stress and effort.” In order to ready Artuμ for day-to-day operations, the AI entity will be tested in potentially millions of virtual training missions — including ones where it faces off against itself. The Air Force must also figure out how to certify it so that it can be used outside of a test environment, Roper said. “The first time we fly an AI in a real operation or real world mission — that's the next big flag to plant in the ground,” Roper said. “And my goal before I leave is to provide the path, the technical objectives, the program approach that's necessary to get to that flag and milestone.” Meanwhile, the team has its own less formal, longer-term challenge: How do you prove to a giant organization like the Air Force, one that is full of bureaucracy and thorough reviews, that a small team of five people can quickly create the innovation the service needs? No regulations, no rules During a Dec. 22 interview, Tierney made it clear that he had little interest in discussing what the U-2 Federal Lab is currently working on. What he wanted to promote, he said, was the concept of how federal laboratories could act as innovation pressure chambers for the military — a place where operators, scientists and acquisition personnel would have the freedom to create without being hamstrung by red tape. For those immersed in military technology, focusing on the promise of federal laboratories can seem like a bit of a letdown, if not outright academic, especially when compared to a discussion about the future of artificial intelligence. The U.S. government is rife with organizations — often named after tired Star Wars references that would make even the most enthusiastic fanboy cringe — created in the name of fostering innovation and rapidly developing new technologies. Many of those advances never make it over the “valley of death” between when a technology is first designed and when it is finally mature enough to go into production. Ultimately, that's the problem the U-2 Federal Lab was created to solve. As a federally accredited laboratory, the team is empowered to create a technology, test it directly with users, mature it over time, and graduate it into the normal acquisition process at Milestone B, Tierney said. At that stage, the product is ready to be treated as a program of record going through the engineering and manufacturing development process, which directly precedes full-rate production. “We're basically front loading all the work so that when we hand it to the acquisition system, there's no work left to do,” Tierney said. The lab essentially functions as a “blue ocean,” as an uncontested market that does not normally exist in the acquisition system, he explained. “There's no regulations; there's no rules.” While that might sound similar to organizations the Air Force has started to harness emerging technologies, such as its Kessel Run software development factory, Tierney bristled at the comparison. “We're basically developing on the weapon system, and then working our way back through the lines of production, as opposed to a lot of these organizations like Kessel Run, which is developing it on servers and server environments,” he said. That distinction is critical when it comes to bringing modern software technologies to an aging platform like the U-2, an aircraft that took its first flight in 1955 and is so idiosyncratic that high speed muscle cars are needed to chase the spyplane and provide situational awareness as it lands. Because the team works only with the U-2, they understand the precise limitations of the weapon system, what its decades-old computers are capable of handling, and how to get the most out of the remaining space and power inside the airplane. Besides Tierney, there are only four other members of the U-2 Federal Lab: a National Guardsman with more than a decade of experience working for IBM, and three civilians with PhDs in machine learning, experimental astrophysics and applied mathematics. (The Air Force declined to provide the names of the other employees from the lab.) As the lone member of the team with experience flying the U-2, Tierney provides perspective on how the aircraft is used operationally and what types of technologies rank high on pilots' wish lists. But what most often drives the team are the projects that can make the biggest impact — not just for the U-2, but across the whole Defense Department. Making it work One of those projects was an effort to use Kubernetes, a containerized system that allows users to automate the deployment and management of software applications, onboard a U-2. The technology was originally created by Google and is currently maintained by the Cloud Native Computing Foundation. “Essentially, what it does is it federates or distributes processing between a bunch of different computers. So you can take five computers in your house and basically mush them all together into one more powerful computer,” Tierney said. The idea generated some resistance from other members of the lab, who questioned the usefulness of deploying Kubernetes to the U-2′s simple computing system. “They said, ‘Kubernetes is useless to us. It's a lot of extra processing overhead. We don't have enough containers. We have one processing board, [so] what are you distributing against? You got one computer,'” Tierney said. But a successful demonstration, held in September, proved that it was possible for even a 1950s-era aircraft to run Kubernetes, opening the door for the Defense Department to think about how it could be used to give legacy platforms more computing power. It also paved the way for the laboratory to do something the Air Force had long been aiming to accomplish: update an aircraft's code while it was in flight. “We wanted to show that a team of five in two days could do what the Department of Defense has been unable to do in its history,” Tierney said. “Nobody helped us with this; there was no big company that rolled in. We didn't outsource any work, it was literally and organically done by a team of five. Could you imagine if we grew the lab by a factor of two or three or four, what that would look like?” The lab has also created a government-owned open software architecture for the U-2, a task that took about three months and involved no additional funding. Once completed, the team was able to integrate advanced machine learning algorithms developed by Sandia National Laboratories in less than 30 minutes. “That's my litmus test for open architecture,” Tierney said. “Go to any provider that says I have open architecture, and just ask them two questions. How long is it going to take you to integrate your service? And how much is it going to cost? And if the answer isn't minutes and free, it's not quite as open as what people want.” The U-2 Federal Lab hopes to export the open architecture system to other military aircraft and is already in talks with several Air Force and Navy program offices on potential demonstrations. Could the Air Force create other federal laboratories to create specialized tech for other aircraft? The U-2 lab was designed from the outset to be franchisable, but Tierney acknowledged that much of the success of future organizations will rest in the composition of the team and the level of expertise of its members. “Can it scale? Absolutely. How does it scale is another question,” Tierney said. “Do you have one of these for every weapon system? Do you have just a couple sprinkled throughout the government? Does it proliferate en masse? Those are all questions that I think, largely can be explored.” For now, it's unclear whether the Air Force will adopt this framework more widely. The accomplishments of the U-2 Federal Laboratory have been lauded by Air Force leaders such as Chief of Staff Gen. Charles “CQ” Brown, who in December wrote on Twitter that the group “continue[s] to push the seemingly impossible.” However, it remains to be seen whether the Biden administration will give the lab the champion it found in Roper, and continued pressure on the defense budget — and to retire older aircraft like the U-2 — could present greater adversity for the lab. But as for the other challenge, the one Tierney and Roper didn't want to discuss, Tierney offered only a wink as to what comes next: “What I can say is that the future is going to be an interesting one.” https://www.defensenews.com/air/2021/02/11/the-tiny-tech-lab-that-put-ai-on-a-spyplane-has-another-secret-project/

  • Aerojet Rocketdyne to Provide ULA's Vulcan Centaur Key Propulsion for Next Generation of Air Force LSP

    11 août 2020 | International, Aérospatial

    Aerojet Rocketdyne to Provide ULA's Vulcan Centaur Key Propulsion for Next Generation of Air Force LSP

    The U.S. Air Force selected United Launch Alliance (ULA) as one of two launch service providers under the National Security Space Launch Phase 2 Launch Services Procurement (LSP). Aerojet Rocketdyne will provide two RL10 rocket engines to power the upper stage of ULA's Vulcan Centaur launch vehicle, as well as the thrusters that control the stage while in flight and the composite overwrapped pressure vessels that store gases required for operation of the launch vehicle. “Aerojet Rocketdyne congratulates ULA on its selection and we look forward to providing our highly reliable RL10 engine on the Vulcan,” said Eileen P. Drake, Aerojet Rocketdyne CEO and president. “Aerojet Rocketdyne has supported the nation's most important national security space missions for decades. We will now bring the RL10 engine's tremendous record of mission success to support the next generation of American National Security Space Launch missions. Under the LSP contract, ULA will support approximately 60% of missions starting in 2022 and continuing through the next five years. The RL10 engine's outstanding performance and reliability has made it the upper-stage engine of choice for the nation. Built in West Palm Beach, Florida, the RL10 engine is currently used to power the upper stages of ULA's Delta IV and Atlas V rockets, and has supported earlier versions of those vehicles dating back to the early 1960s. The flight-proven RL10 engine provided the upper-stage propulsion to place hundreds of military, civil and commercial satellites into orbit and has sent spacecraft on their journeys to explore every planet in our solar system. The RL10 engine has been continuously upgraded throughout its service life with recent efforts focused on incorporating additive manufacturing to enhance affordability while maintaining its unequaled performance. “With 500 engines flown in space, the RL10 has an unmatched reputation worldwide,” added Drake. “We look forward to continuing our strong partnership with ULA as we provide an advanced RL10 engine for Vulcan.” Source: United Launch Alliance Date: Aug 8, 2020 https://www.asdnews.com/news/aerospace/2020/08/08/aerojet-rocketdyne-provide-ulas-vulcan-centaur-key-propulsion-next-generation-air-force-lsp

Toutes les nouvelles