23 juillet 2018 | International, Aérospatial

Boeing serait "ravi" de participer au Tempest britannique

PARIS (Reuters) - Boeing serait "ravi" de participer au nouveau programme d'avion de combat britannique, même si le projet doit encore être précisé, a déclaré vendredi à Reuters Leanne Caret, patronne de Boeing Defense, Space & Security.

La Grande-Bretagne, qui n'a pas développé d'avion de combat seule depuis les années 1960, a dévoilé lundi son futur avion "Tempest" au salon de Farnborough, près de Londres, parallèlement au programme franco-allemand piloté par Paris à horizon 2040.

"Ils sont encore en train de mener leurs propres études militaires et de déterminer où ils vont", a dit Leanne Caret au salon de Farnborough. "S'il y a une opportunité pour Boeing de participer et de jouer un rôle, nous serons absolument honorés et ravis d'être du voyage".

Eric Trappier, PDG de Dassault Aviation a raillé jeudi le "réveil" des Britanniques vis-à-vis des avions de combat, tandis que ce projet crée une nouvelle lutte fratricide comme celle que se livrent actuellement le Rafale, l'Eurofighter et le Gripen suédois..

Il reste à savoir si les deux projets pourraient fusionner à la suite de la sortie de la Grande-Bretagne de l'Union européenne prévue en mars 2019 ou si Londres nouera de nouvelles alliances, peut-être avec le suédois Saab, constructeur du Gripen.

Une alliance entre le britannique BAE Systems, Saab et peut-être le brésilien Embraer, récemment allié à Boeing, pourrait faire émerger un sérieux concurrent au projet franco-allemand.

Boeing, qui construit les F/A-18E/F et F-15, pourrait ainsi trouver l'occasion de revenir dans un programme de développement d'avion de combat après avoir perdu le contrat du F-35 au détriment de Lockheed Martin en 2001.

Sur le même sujet

  • State Dept. approves $194M upgrade deal for South Korea's F-16s

    31 mars 2020 | International, Aérospatial

    State Dept. approves $194M upgrade deal for South Korea's F-16s

    ByEd Adamczyk March 30 (UPI) -- The State Department approved a sale of upgrades to South Korea's F-16 fighter planes, the Defense Security Cooperation Agency said on Monday. The $194 million sale, expected to be approved by Congress, calls for South Korea to obtain Mode 5 Identification Friend or Foe equipment, known as IFF, and Link 16 Technical Datalink equipment for its F-16 Block 32 fleet. IFF, in use since the 1940s and improved regularly, identifies and tracks military aircraft, and Mode 5 is the most recent implementation of the system. It uses waveform modulation, coding, and cryptographic techniques to quickly determine the identity and heading of an aircraft. Link 16 is a military data link network allowing military ships and aircraft to share tactical picture of a situation in real time, and offers an offers an exchange of text messages, imagery data and two channels of digital voice transmission. Each system is currently in use by NATO countries. The proposed deal includes the sale of radios, Combined Interrogator Transponders, a Joint Mission Planning upgrade, secure voice modules, crypto fill devices, aircraft ferry support, training, integration support and test equipment, and contractor, engineering, technical and logistics support services. The Republic of Korea Air Force has 180 F-16s, in two variants. https://www.upi.com/Defense-News/2020/03/30/State-Dept-approves-194M-upgrade-deal-for-South-Koreas-F-16s

  • A jet sale to Egypt is being blocked by a US regulation, and France is over it

    2 août 2018 | International, Aérospatial

    A jet sale to Egypt is being blocked by a US regulation, and France is over it

    By: Pierre Tran PARIS — France is seeking to reduce its reliance on U.S. approval for French arms exports as Washington withholds clearance for an American component on the French Scalp cruise missile, which blocks the sale of additional Rafale fighter jets to Egypt. “It is true that we depend on this (U.S. International Traffic in Arms Regulations) mechanism: We are at the mercy of the Americans when our equipment is concerned,” French Armed Forces Minister Florence Parly told the Committee for National Defense and Armed Forces of the lower-house National Assembly, according to recently released transcripts from July 4. France lacks the means to be totally independent of the U.S., she said, adding that French authorities are looking for ways to boost its autonomy. Parly was answering a question from parliamentarian Jean-Jacques Ferrara on the blocked sale of a further batch of Rafale aircraft to Egypt. “Are we looking to improve the situation?” Parly said. “The answer is yes. In the case raised by Mr. Ferrara, we cannot get the U.S. to lift its opposition to the sale of Scalp missiles." “What is the solution? That the manufacturer of these missiles, namely MBDA, make the investment in research and technology to be able to make a similar component, which would avoid ITAR," she added." “We are able to do it for this contract because the component can be built within a reasonable amount of time even if the client, naturally, sees it as too long.” MBDA declined to comment for this story. Full article: https://www.defensenews.com/global/europe/2018/08/01/a-jet-sale-to-egypt-is-being-blocked-by-a-us-regulation-and-france-is-over-it/

  • 3-D Scanning Technology Makes Splash at NNSY Thanks to Partnership with Puget Sound

    1 août 2019 | International, Naval

    3-D Scanning Technology Makes Splash at NNSY Thanks to Partnership with Puget Sound

    By Kristi Britt, Public Affairs Specialist, PORTSMOUTH, Va (NNS) -- Although they have only worked at Norfolk Naval Shipyard (NNSY) for less than 10 months, two employees are already involved in the future of innovative technologies in America's Shipyard. Code 268 Engineering Technician Jason Ewick and Code 2340 Assist Shift Test Engineer (ASTE) Joey Hoellerich were brought into the NNSY Technology and Innovation (T&I) Lab, a group dedicated to bringing the real ideas and technologies of the shipyard to the forefront. With their arrival to the team, both were given the unique opportunity to share knowledge with Puget Sound Naval Shipyard and Intermediate Maintenance Facility (PSNS&IMF), using laser scanning to provide accurate measurements for shipboard work. “The USS Dwight D. Eisenhower (CVN 69) was at NNSY in years past, Naval Air Systems Command (NAVAIR) brought Puget Sound representatives to our shipyard to use their laser scanning technology to cut off all added material from four sponsons onboard the vessel,” said NNSY T&I Lab Lead Dan Adams. Sponsons are the projections extending from both sides of the watercraft to provide protection, stability, mounting locations, etc. “During the time, we observed the process and wanted to learn what we could from our sister shipyard team.” The team from PSNS&IMF returned to NNSY to give guidance on the process, with Code 290 representative Dan Hager, and Shop 11 Mold Loft representatives Jason Anderson and Jeremiah Swain taking charge in sharing what they knew to Ewick and Hoellerich. “The team from Puget was absolutely amazing and shared the ins and outs of the 3-D scanning technology with us,” said Ewick. “I had done laser scanning work in the private industry but it was my first time tackling something like this. Hager, Anderson, and Swain guided us through each step, sharing as much knowledge as they could with us about two different processes we could use to get the results we needed.” The first process is photogrammetry, where you place targets an inch apart on a desired object or space for scanning. Once complete, you take multiple photographs which are then compiled into a software to build the 3-D model. The second process is the 3-D laser scanning, which requires more space for a larger read. The targets would be placed and then someone would operate the laser tracker and scanner from the pier to get the scan needed. Once completed, the 3-D model would be compiled in the software for use. With the knowledge provided by PSNS&IMF and USS George H.W. Bush (CVN 77) in drydock, Ewick and Hoellerich were ready to tackle the process for NNSY. “We began at Colonna's Shipyard in Norfolk where the sponsons are being produced,” said Ewick. “We use the scanning technology to analyze where the sponson would meet the shell of the ship. It helps provide an accurate measurement for our workers when it comes to installation and repair.” Next up was scanning after the pieces were installed. At this time three of the four sponsons have been installed onboard the Bush. “The two forward sponsons were scanned using photogrammetry,” said Ewick. “It was a first for us and required coordination across various shops and codes throughout the shipyard.” The Pipefitter Shop (Shop 56), The Optical Diesel Mechanics (Shop 38), the Shipfitter Shop (Shop 11), the Shipyard Operations Department (Code 300), and partners at Puget all played a part in this evolution. “It was a collaborative effort and we were able to be successful thanks to our shipyard family coming together to make it happen.” This process was a first for NNSY and a first for using the software directly in the drydock instead from piers and barges. “It's amazing to see something come together like this, especially when you think that we were two blank slates coming into the project,” said Hoellerich who had no prior experience working with 3-D scanning and metrology before joining the lab. “We were able to partner with our sister shipyard and work with shops and codes that I never thought I'd be able to do when I first joined the ranks of NNSY. Being able to gain that knowledge from our shipyard family and utilize what we've learned in the field is something those of us working in innovation live for.” The team will be completing the rear scans for the Bush in the future and hope to continue to perfect the process. In addition, they hope to continue to work with other shipyard entities to further expand on the technologies of the future. “This partnership has been a major success for us and we hope to continue to build those relationships with the other shipyards and beyond,” said Hoellerich. “We can all learn from each other and build from each other's experiences. We all share a mission and together we can succeed.” Ewick added, “we've also begun expanding more ways we can use the scanning technology at our shipyard. For example, we are looking into a future project where we scan inside the ship and build a path for extracting heavy equipment from within as to avoid interferences. We've seen more interest from others within the shipyard since we began to do work with this technology, seeing what ways it could help improve what we do here. That's what innovation is all about, taking those first steps in seeing what works. Even if what you try doesn't pan out, at least you gave it a shot. But you'll never know if it works or not unless you take that step. Don't be scared to try out something new.” For more information regarding innovation, contact the NNSY T&I Lab at 757-396-7180 or email the REAL Ideas program at NNSY_REALIdeas@navy.mil. https://www.navy.mil/submit/display.asp?story_id=110422

Toutes les nouvelles