10 octobre 2023 | International, Terrestre, Sécurité

BAE Systems successfully tests M109 Self-Propelled Howitzer modified with 52-caliber cannon

The M109-52 is a significant, low-risk, high-performance upgrade to the current 39-caliber cannon and provides the additional range required in large-scale combat operations. 

https://www.epicos.com/article/776471/bae-systems-successfully-tests-m109-self-propelled-howitzer-modified-52-caliber

Sur le même sujet

  • Remotely Piloted Aircraft: Implications for Future Warfare

    30 janvier 2020 | International, Aérospatial

    Remotely Piloted Aircraft: Implications for Future Warfare

    By Lt. Col. Johnny Duray When an MQ-1 Predator fired an AGM-114 Hellfire missile in the opening stage of Operation Enduring Freedom over Afghanistan, the world discovered a new form of power projection: kinetic force delivered from unmanned, remotely piloted aircraft (RPA). That proof of concept drove exponential growth in RPA usage, with combat air patrols (CAPs) swelling from just four in 2004 to 65 simultaneous, worldwide CAPs every day in 2014. Yet there is still more work to be done to fully realize the power of RPA technology. As the new US national defense strategy focuses on an era of great power competition, RPAs will provide valuable capabilities and capacity to address the persistent threat posed by violent extremist organizations. In doing so, RPAs will also allow other portions of America's air arsenal to focus on near-peer competitor challenges. Achieving this goal requires a new vector for the use of RPAs, as illustrated in the vignettes that follow. Though details have been obscured for operational sensitivity, the narratives and lessons remain largely intact. The Camp Strike. Graphic: Mike Tsukamoto and Dash Parham/staff View or download this infographic The Camp Strike In one recent RPA mission, intelligence sources helped the US military discover a remote jihadi training facility. Plans called for eliminating the radicals with airpower. Leaders initially sought bomber aircraft for the strike, which required scheduling and positioning refueling aircraft, obtaining overflight clearances, and coordinating for personnel recovery—all time- and resource-intensive factors that didn't apply to the RPAs already providing persistent ISR overhead, as explained in RAND publication Armed and Dangerous? UAVs and US Security. When bombers proved unavailable, a four-ship formation of fighter aircraft was requested. This option necessitated an even more robust support structure, as the fighters needed to forward deploy closer in theater. This also required a massive undertaking involving the movement of support personnel and equipment, despite the fact that multiple armed MQ-9 aircraft were already conducting daily surveillance and intelligence missions in the vicinity of the camp. Two environmental factors introduced further complexity into this mission. First, the camp was embedded deep inside a canyon with a valley floor only 15 feet wide. Any air-launched weapons would need to be precisely aimed to strike the narrow space between the canyon walls. Second, the jihadis were broken up into two distinct groups, two to three miles apart. A first-run attack would require delivery of simultaneous effects. Re-attacks on survivors would need to be conducted expeditiously. Once the bomber and fighter options proved unavailable, leaders finally selected four MQ-9 Reapers to execute the mission. Reaper One, Reaper Two, and Reaper Three were flown by squadrons in the same location, while Reaper Four was flown by a squadron at a separate location. The first three Reaper crews planned, briefed, and executed as a formation, or flight, bringing the geographically separated Reaper Four into the planning as much as possible before execution. The four Reapers were equipped with two 500-pound GBU-12 laser-guided bombs and 16 air-to-ground Hellfire missiles. Reaper One teamed with Reaper Four to make a run on the first target group, dropping the 500-pound bombs. Once established inbound, Reaper One passed an estimated “bombs-on-target” time to Reaper Two and Reaper Three, which targeted the second group of terrorists-in-training with four Hellfire missiles in order to achieve simultaneous effects. The synchronicity was near perfect. Weapons impacts from the bombs on the first group and the Hellfires on the second group were within a second of each other. The four MQ-9s hit two separate target sets with six munitions on four different aimpoints with a time on target calculation formulated as the mission progressed, based on outside clearance authority. Reaper Two and Reaper Three teamed up to immediately re-attack the survivors. Prior planning, internal communication, and near-real-time data sharing enabled an unprecedented display of efficiency. RPA pilots physically located together can speak into each other's headsets without delay on an intercom channel, for example. Reaper Three rifled off all four of its Hellfires on three separate re-attacks in under seven minutes. In one instance, Reaper Three fired a Hellfire on a group of terrorists without ever having even seen it, since Reaper Two had tracked the group and provided final weapons guidance for Reaper Three's missile. Reaper One and Reaper Four were left to conduct re-attacks as solo aircraft, since they lacked the prerequisites for the seamless integration enjoyed by Reapers Two and Three. As such, they were only able to employ three of their available eight Hellfires in the first 16 minutes following the initial strike. The final attack was conducted two hours later when Reaper Three found a group of eight enemy combatants hiding in a small ravine. Out of munitions, Reaper Three talked the crew of Reaper Four on to the group. The terrain only allowed a window of approximately 20 seconds for an MQ-9 to provide final guidance onto the target before becoming masked by rocks. Reaper Four shot a Hellfire into the ravine, target unseen, while Reaper Three came in from the opposite direction, crested the terrain, and timed the aircraft's positioning so that final guidance was placed on the enemy group in the last 10 seconds of the missile's flight. By the conclusion of the mission, some 85 percent of the combatants were killed with the other 15 percent wounded. Camp Strike Lessons Learned Some of the lessons from this operation: The MQ-9 Reaper delivers unique capabilities in combat. The Reaper's slow airspeed permits more time to strike targets in steep or inaccessible terrain, while supersonic fighters and bombers permit only brief execution windows before sensors and targeting capabilities are masked. Nevertheless, the training required to take advantage of this capability is akin to the demands for manned aircraft crews. The range and effectiveness of present-day RPA strikes is possible because of the robust training, US Air Force Weapons School caliber planning, and RPA technological advances made since 2001. Remotely piloted aircraft provide synergistic effects when employed together as a flight. The idea of operating RPAs in a flight is still new. Operational planners typically task the closest RPA available just prior to the execution of a complex strike, requiring extensive coordination among the participants. But an RPA flight generates synergistic effects, just like manned aircraft, through a mutual understanding of responsibilities and a shared awareness of the battlespace. This is best cultivated through extensive prestrike planning and briefing, along with real-time information sharing during execution. Bringing together single aircraft from separate squadrons just before a mission ignores the lessons of airpower history in the name of convenience. Decentralized execution is fundamental to successful RPA application. RPAs present an unprecedented opportunity for “reach-in.” With unparalleled observation and communication capabilities, commanders at all levels have violated the long-held tenet of decentralized airpower execution and exerted direct control. Focus on platforms rather than effects stifles RPA operations. The fluid, dynamic nature of kinetic engagements demands mission-command orders that rely on tactical expertise and the situational awareness of those employing the aircraft. Yet effects are what matter in operations, not platforms. As long as commanders tie specific aircraft to specific missions, rather than desired effects, RPAs will continue to be underutilized. RPA aircrews routinely participate in operational planning sessions where the ability to position fighters overhead to provide close air support (CAS) is deemed a “go/no-go” factor by ground and air planners alike. When queried to elaborate on desired effects, ground force representatives routinely reply that they want airpower to assist in “breaking contact with the enemy” to facilitate a return to safety. Although a flight of MQ-9s armed with a dozen Hellfire missiles and a few 500-pound bombs could achieve this effect, planners continue to revert to their default understanding that only aircraft with an A-, F-, or B-designation can provide effective CAS. The 15-Second Window. Graphic: Mike Tsukamoto and Dash Parham/staff Vignette: The 15-Second Window As part of global counterterrorism operations, US and coalition forces tracked a senior terrorist leader several years ago. After extensive study, a concept of operations (CONOPS) developed to facilitate a strike on this individual within an incredibly tight window—the time it took for him to ride his motorcycle to his home, after departing from a main road but before entering a courtyard near his residence. This strike window lasted only about 15 seconds. This broke down into two problems: First, successfully positioning a shooting aircraft within a 15-second engagement window within seven seconds of the target departing the main road, and second, planning around a fork in the main road that afforded the target two options. Route A was simple—there were no further intersections before the target left the main road and entered the engagement window. Route B was more nuanced, with one additional intersection before the target left the main road. The shooting aircraft would need to maneuver to get into position before the target hit the additional intersection. If the target was held up for even a few seconds, it could throw off timing and negate all previous planning. Three MQ-9s were allocated for the strike. Reaper One took the lead and began timing calculations to maneuver into position. Reaper Two followed the target motorcycle as it traveled toward the engagement site. Data sharing allowed Reaper One to position itself within the 15 second window at precisely the time the motorcycle turned off the main road and came into the field of view (FOV). Reaper Three stared at the additional intersection along Route B. Reaper One was able to view Reaper Three's feed to determine the possibility of the target getting held up at that intersection should he travel along Route B. As events unfolded, the target chose to continue down Route B. Updates on the target's distance and speed from Reaper Two and the intersection traffic from Reaper Three enabled Reaper One to successfully maneuver the aircraft into the 15-second window, fire, and eliminate the target with no collateral damage. 15-Second Lessons Learned The success of this strike was made possible by a flight-focused operations approach, paired with an intensive training program, and truly decentralized execution. It also introduced three new areas to reflect on. Data-sharing brings asymmetrical advantages to bear in modern warfare. The strike on the senior terrorist was heavily reliant on real-time data sharing between aircrews, which allowed the flight to get inside the adversary's decision loop and reorient quicker than the adversary. Risk acceptance enables rapid advancement. The rapid acceleration of software (and some hardware) enhancements have enabled RPA airmen to execute kinetic engagements that would not have been proposed just five or six years ago. These capabilities were largely possible because the RPA community's close working relationship with industry allowed it to accept imperfect solutions in the name of accelerated capability. Tactical oversight offers enhanced RPA capabilities. The ability of an MQ-9 squadron to place additional personnel in a ground control station (GCS) to support a traditional two-person crew transforms what that aircraft can bring to bear in combat. This tactical oversight boosts the capability of the crew, elevating success rates for complex engagements. This is especially important, since in modern operations, the MQ-9 pilot has neither a flight lead nor an experienced aircraft commander to rely on for decision- making, in most cases as a result of years of surging RPA demand. The Attempted Rescue. Graphic: Mike Tsukamoto and Dash Parham/staff Vignette: The Attempted Rescue On one calm, moonless night a few years ago, a small group of US special operations forces parachuted from a transport aircraft on a hostage rescue mission. Overhead, three MQ-9s and a U-28 manned ISR aircraft provided support to the SOF team from insertion, through the rescue operation, and the exfiltration. The three MQ-9s were co-located and operated out of the same RPA operations center, where a small staff stood up to support the three flying crews. As the SOF team worked its way toward the hostage's reported location, it became apparent to the RPA operations center director that key real-time intelligence was taking too long to get to the ground forces via the joint operations center (JOC)—the main mission hub. The MQ-9 elements overhead had direct radio contact with ground forces and, more importantly, instant access to the intelligence as well. After a quick discussion about transferring responsibility from JOC leadership to the MQ-9 pilots, the time frame for essential intelligence processing to ground forces went from a minute to under five seconds. A U-28 aircrew member was prepositioned inside the ROC to provide subject-matter expertise on the ISR aircraft, as well as techniques, tactics, and procedures to the MQ-9 crews and ROC staff. Unfortunately, as the team arrived at the location, it discovered that the hostage had been moved from the village just prior to the raid. However, the event offered a real-world opportunity to explore several underutilized capabilities that RPAs and the operations center could apply to future missions. Attempted Rescue Lessons Learned RPAs' ability to port talent into any cockpit at any time is unprecedented in the history of airpower. Because of the physical setup of the ground stations that operate RPAs, any individual can “enter” the airplane while airborne. In this example, a U-28 expert was brought in to assist with airborne integration. Airborne integration could also be extended to fighters, bombers, and any number of other assets. Ground forces could send delegates to a ROC to educate and enable integration between RPAs and supported surface elements. RPA operations centers are uniquely positioned to fuse and disseminate information. These centers allow operational directors to seamlessly communicate face-to-face with the aircrews that provide a majority of the center's data. It is the equivalent of a combined forces air component commander (CFACC)—while in charge of an AOC—being able to jump into the cockpit of any manned aircraft under his authority. Additionally, the land-based setup of the GCS enables an RPA cockpit to connect to modern combat untethered by bandwidth and connectivity limitations that plague most airborne manned aircraft. The Way Forward for Air Force RPAs These three vignettes provide substantial food for thought about how RPAs expand the flexibility and capability of air component commanders. This leads to four critical implications that policy makers, DOD leaders, and Air Force officials should consider: Reconsider airpower force posture in the fight against violent extremist organizations. In light of changing national priorities and finite resources, it is imperative to find ways to sustain the counter-extremist mission in a more cost-effective manner. The cost of employing fighter or bomber aircraft is so much greater than MQ-9s that it should be self-evident. MQ-9 RPAs provide cost-effective capability that can assume many of the mission sets now prosecuted by high-end aircraft in today's counter-terror missions. Redeploying the majority of American high-end fighter and bomber aircraft back to their home bases prolongs their service life and generates valuable aircrew training hours to recapture depleted high-end skills. Investment in information-sharing will bring transformational advantages. As a whole, the US military must tear down parochial walls and allow information between disparate elements of hard power—tanks, ships, aircraft, infantry, and other forces—to flow more freely. The successful execution of the time-sensitive targeted strike on a terrorist leader described above was made possible by the rapid exchange of information between platforms. Unfortunately, this type of interconnectivity is sporadic between air assets even within the same US military service, and even worse among multi-domain assets from other services. Investment in RPA infrastructure is necessary to better share data and information with other systems, services, and the rest of DOD's network. Airmen must understand and articulate appropriate command and control (C2) relationships for RPAs. To fully realize the potential of present and future RPAs in combat, airmen must oppose any effort to centralize execution and challenge command structures that fail to place airmen in positions where their “air-mindedness” could maximize the Air Force's contribution to joint operations. In other words, airmen should influence airpower decisions at all levels of warfare. RPAs offer unprecedented opportunities for outside “reach-in” during tactical execution—and while senior commanders have indeed attempted to control all sorts of tactical elements, from aircraft positioning, to weapons placement, to camera field-of-view, this type of centralized execution stifles RPA aircrews from successfully exploiting fluid operational situations. Expand RPAs mission sets to include close air support. MQ-9 capabilities and tactics have reached a stage where planners need to rethink allocation for key missions, especially close air support. RPAs have transformed both the amount of firepower they bring to bear on the battlefield and the speed at which this ordnance can be delivered. Despite this, the MQ-9 is still predominantly regarded across the Air Force as an ISR asset, and rarely incorporated into CAS scenarios. According to one Air and Space Power Journal article, a mission ISR plan “is completed on a different timeline by different people in a different division in the [Air and Space Operations Center] and published in a different document. If CAS and ISR integrate, they do so by luck.” While not all CAS scenarios are appropriate for MQ-9s, military planners should embrace an effects-based perspective and try to minimize platform-centric bias. Remotely piloted aircraft and their associated operations centers present an ideal platform for entry-level multi-domain exploitation and rapid acquisition trials. Compared with traditional aircraft, RPA cockpits offer a prodigious amount of space and connectivity. Limited only by bandwidth and imagination, RPA offer unique opportunities to take advantage of multi-domain exploitation and use rapid acquisition capabilities to further the state-of-the-art. In current combat operations, the Air Force's MQ-9 is as different from its Operation Enduring Freedom-era 2001 MQ-1 forbearer as an F-16 is from a P-51. However, this transformation has collided with cultural differences rooted in traditional notions of force employment—both in the air and on the ground. This has led to sub-optimal utilization and investment considerations. Today, fighters and bombers are no longer the only option for mass strike, and RPAs are no longer just airborne sniper rifles. RPAs can effectively conduct CAS, particularly with small ground team elements like SOF units. These two considerations alone should cause US military leaders to rethink American force posture for the fight against violent extremist organizations. Remotely piloted aircraft operations are ripe for exploitation with centralized execution, yet “mission-type tactics”—where operational outcomes are emphasized more than any specific means of achieving them—are a central tenet to maximizing RPA potential. Continued investment in the RPA community is crucial to building on the momentum these assets are gathering in operations around the world. This will require harnessing information-sharing through open system architectures. The United States' continued prosecution of low-intensity conflicts around the world, and the need to prepare for potential near-peer military confrontations, both benefit from an agile, decentralized, and well-connected RPA force whose lethality is intelligently incorporated into joint force operational planning. Military leaders with a commanding grasp on RPA capabilities and a willingness to think beyond traditional aircraft mission sets, will be best positioned to take full advantage of every capability RPA can bring to bear in future combat. Air Force Lt. Col. John D. Duray is a senior pilot with more than 3,200 flight hours in the MQ-9 and U-28 and extensive experience in combat and combat support missions. He has supported Operations Iraqi Freedom, Enduring Freedom, Inherent Resolve, and Freedom's Sentinel, and deployed to four different areas of responsibility. The opinions and assessments expressed in this article are the author's alone and do not reflect those of the Department of Defense or the US Air Force. This article is adapted from a forum paper published by the Mitchell Instititue for Aerospace Studies. https://www.airforcemag.com/article/remotely-piloted-aircraft-implications-for-future-warfare/

  • ATAC awarded F-35 chase flight services contract

    12 août 2022 | International, Aérospatial

    ATAC awarded F-35 chase flight services contract

    ATAC will provide three Mirage F1 aircraft for approximately 600 flight hours per year from Naval Air Station Joint Reserve Base (NAS JRB) in Fort Worth, Texas

  • Contract Awards by US Department of Defense - March 1, 2019

    5 mars 2019 | International, Aérospatial, Naval, Terrestre, C4ISR, Sécurité, Autre défense

    Contract Awards by US Department of Defense - March 1, 2019

    AIR FORCE Millennium Engineering and Integration Co., Arlington, Virginia, has been awarded a $340,000,000 indefinite-delivery/indefinite-quantity contract for research and development. This contract provides research, engineering, and technical management for performing space technology concept development, analysis, development, integration, experimentation, demonstration, and evaluation in support of the Air Force Research Laboratory Space Vehicles Directorate. Work will be performed at Kirtland Air Force Base, New Mexico, and is expected to be complete by April 30, 2026. This award is the result of a competitive acquisition and five offers were received. Fiscal 2018 and 2019 research and development funds in the amount of $5,000,000 are being obligated on initial task orders at the time of award. Air Force Research Laboratory, Kirtland Air Force Base, New Mexico, is the contracting activity (FA9453-19-D-0002). Rowe Contracting Service Inc., Mandeville, Louisiana, has been awarded a $25,000,000 ceiling indefinite-delivery/indefinite-quantity contract for academic and athletic custodial services. This contract provides for custodial services for the academic and athletic facilities at the U.S. Air Force Academy. Work will be performed at the U.S. Air Force Academy, Colorado, and is expected to be complete by Feb. 29, 2024. This award is the result of a competitive acquisition and 27 offers received. Fiscal 2019 operations and maintenance funds in the amount of $1,667,389 are being obligated at the time of award. The 10th Contracting Squadron, U.S. Air Force Academy, Colorado, is the contracting activity (FA7000-19-D-A002). Polskie Zaklady Lotnicze Sp. z. o.o., Mielec, Poland, has been awarded an $18,982,157 firm-fixed-price contract for M28 Block 05 aircraft. This contract provides for two new, commercially produced, M28 Block 05 aircraft, associated initial aircraft and maintenance training, technical publications, and ferry flight service for the M28 Block 05 aircraft from Mielec, Poland, to Kathmandu, Nepal. Work will be performed in Mielec, Poland, and is expected to be complete by Dec. 20, 2019. This contract involves foreign military financing to Nepal. This award is the result of a country-directed sole-source acquisition. Foreign military financing funds in the full amount are being obligated at the time of award. Air Force Life Cycle Management Center, Wright-Patterson Air Force Base, Ohio, is the contracting activity (FA8625-18-C-1201). Phoenix Management Inc., Austin, Texas, has been awarded a not-to-exceed $7,886,394 firm-fixed-price, cost-reimbursable contract for base operating support services. This contract provides for base operating support services in support of supply management, vehicle operations and maintenance, traffic management operations, real property maintenance, fuels management, and airfield management functions. Work will be performed at Westover Air Reserve Base, Massachusetts, and is expected to be complete by Nov. 30, 2019. This award is the result of a sole-source acquisition. Fiscal 2019 and operations and maintenance funds in the amount of $3,943,197 are being obligated at the time of award. The 439th Contracting Flight, Westover ARB, Massachusetts, is the contracting activity (FA6606-19-C-A003). DEFENSE LOGISTICS AGENCY City Light & Power (CLP), Greenwood Village, Colorado, has been awarded an estimated $126,616,791 fixed-price with economic-price-adjustment contract for the ownership, operation and maintenance of the electric distribution system at Keesler Air Force Base, Mississippi. This was a competitive acquisition with four responses received. This is a 50-year contract with no option periods. Location of performance is Mississippi, with an Aug. 31, 2069, performance completion date. Using military service is Air Force. The type of appropriation is fiscal 2019 through 2069 Air Force operations and maintenance funds. The contracting activity is the Defense Logistics Agency Energy, Fort Belvoir, Virginia (SP0600-19-C-8320). Raytheon Integrated Defense Systems, Portsmouth, Rhode Island, has been awarded a maximum $26,490,520 firm-fixed-priced contract for receiver transmitters. This was a sole-source acquisition using justification 10 U.S. Code 2304 (c)(1), as stated in Federal Acquisition Regulation 6.302-1. This is a three-year, two-month contract with no option periods. Location of performance is Rhode Island, with a June 28, 2022, performance completion date. Using military service is Navy. Type of appropriation is fiscal 2019 through 2022 Navy working capital funds. The contracting activity is the Defense Logistics Agency Aviation, Philadelphia, Pennsylvania (SPRPA1-19-F-LY00). Travis Association for the Blind,** doing business as The Lighthouse for the Blind, Austin, Texas, has been awarded a maximum $19,958,826 modification (P00014) exercising the first one-year option period of a two-year base contract (SPE1C1-17-C-B003) with three, one-year option periods for warehousing, storage, logistics and distribution functions. This is a fixed-price with economic-price-adjustment contract. Location of performance is Texas, with a Feb. 29, 2020, performance completion date. Using customers are Air Force, Marine Corps, and Defense Logistics Agency. Type of appropriation is fiscal 2019 through 2020 defense working capital funds. The contracting activity is the Defense Logistics Agency Troop Support, Philadelphia, Pennsylvania. U.S. TRANSPORTATION COMMAND International Auto Logistics LLC, Brunswick, Georgia, has been awarded a task order modification (P00022) on contract HTC711-14-D-R025. This modification provides continued support of transportation and storage of Department of Defense-sponsored shipments of privately-owned vehicles belonging to military service members, and transportation of DoD-sponsored shipments of privately-owned vehicles belonging to DoD civilian employees. Work will be performed at multiple locations within the U.S. and outside the U.S. The option period of performance is March 1, 2019, to Aug. 31, 2019. Fiscal 2019 Transportation Working Capital Funds in the amount of $89,700,672 (estimated) were obligated at award. This modification brings the total cumulative face value of the contract to $927,409,026 from $837,708,354. U.S. Transportation Command, Directorate of Acquisition, Scott Air Force Base, Illinois, is the contracting activity. NAVY HDT Expeditionary Systems Inc. (HDT), Solon, Ohio (N00178-19-D-4503); and Design West Technologies (DWT),* Tustin, California (N00178-19-D-4504), are each awarded multiple award indefinite-delivery/indefinite-quantity contracts with firm-fixed-pricing arrangements for the procurement of M98 gas particulate filter sets. The maximum ceiling dollar value for both contracts combined is a possible $78,565,403. The two contractors may compete for task orders under the terms and conditions of the awarded contracts. Work will be performed in Solon, Ohio, for the filters manufactured by HDT and Tustin, California, for the filters manufactured by DWT, and is expected to be complete by March 2024. Fiscal 2019 operations and maintenance (Navy) funding in the amount of $1,605 for HDT and 2019 operations and maintenance (Navy) $1300 for DWT will be obligated at time of award and will expire at the end of the current fiscal year. In accordance with 10 U.S. Code 2304, these contracts were competitively procured via the Federal Business Opportunities website, with two offers received. The Naval Surface Warfare Center, Dahlgren Division, Dahlgren Virginia, is the contracting activity (N00178-18-R-5005). Rockwell Collins, ESA Vision Systems, Fort Worth, Texas, is awarded a $22,137,097 firm-fixed-price contract for the production and delivery of 132 Joint Helmet Mounted Cueing System (JHMCS), Night Vision Cueing and Display Systems (NVCD); 56 in support of Navy, 55 in support of the government of Australia and 21 in support of the government of Switzerland. In addition, this contract provides technical data, non-recurring engineering and all other supplies and services necessary to perform installation and testing of the JHMCS/NVCD systems. Work will be performed in Merrimack, New Hampshire (79 percent); Wilsonville, Oregon (15 percent); Atlanta, Georgia (4 percent); and Fort Worth, Texas (2 percent), and is expected to be completed in February 2021. Fiscal 2017, 2018 and 2019 other procurement (Navy); and Foreign Military Sales (FMS) funds in the amount of $22,137,097 will be obligated at time of award, $292,060 of which will expire at the end of the current fiscal year. This contract combines purchases for the Navy ($9,312,361; 42 percent), the government of Australia ($9,108,738; 41 percent); and the government of Switzerland ($3,715,998; 17 percent). This contract was not competitively procured pursuant to Federal Acquisition Regulation 6.302-1. The Naval Air Warfare Center Aircraft Division, Patuxent River, Maryland, is the contracting activity (N00421-19-C-0008). Austal USA, Mobile, Alabama, is awarded a $13,586,012 fixed-priced-incentive undefinitized contract modification to previously awarded contract N00024-16-C-2217 for the incorporation of a structural bow section engineering change proposal to the 11th and 12th Expeditionary Fast Transport (EPF) ships (formerly Joint High Speed Vessel – JHSV). The EPF provides high-speed, shallow-draft transportation capability to support the intra-theater maneuver of personnel, supplies and equipment for the Navy, Marine Corps and Army. This modification is an undefinitized contract action for implementation of change to the bow structure on EPF 11 and EPF 12 on the DD&C Contract Line Item (CLIN) for each respective ship. Work will be performed in Mobile, Alabama (56 percent); Pascagoula, Mississippi (35 percent); Franklin, Massachusetts (7 percent); and Wilmer, Alabama (2 percent), and is expected to completed by July 2019. Fiscal 2015 and 2016 shipbuilding and conversion (Navy) funding in the amount of $8,151,608 will be obligated at time of award and will not expire at the end of the current fiscal year. The Naval Sea Systems Command, Washington, District of Columbia, is the contracting activity. General Atomics, San Diego, California, is awarded an $11,739,438 for ceiling-priced delivery order N00383-19-F-NA09 under previously awarded basic ordering agreement (N00383-18-G-NA01) for the manufacture of 181 various line items for initial spares acquisition in support of the Electromagnetic Aircraft Launch System used on aircraft carriers. Work will be performed in Tupelo, Mississippi, and work will be completed by January 2022. Fiscal 2019 working capital funds (Navy) in the amount of $5,752,324 will be obligated at the time of award and funds will not expire at the end of the current fiscal year. One firm was solicited for this non-competitive, sole-source requirement in accordance with Federal Acquisition Regulation 6.302-1, and one offer was received. Naval Supply Systems Command Weapon Systems Support, Philadelphia, Pennsylvania, is the contracting activity. Chemring Ordnance Inc., Perry, Florida, is awarded a $10,406,730 single year firm-fixed-price (FFP) contract, in response to solicitation number N00174-18-R-0031, for the manufacture, assembly, test, and delivery of 57mm High Explosive – Point Detonating cartridges. The 57mm HE-PD Cartridge is a 57mm/70, electrically-primed cartridge designed to function in the 57mm MK 110 Gun Mount (GM). The MK 110 GM is employed on the Navy Littoral Combat Ship class and the Coast Guard Legend-class National Security Cutters. This requirement is to develop and produce 57mm HE-PD cartridges intended for combating surface and ground targets. The cartridge consists of a high explosive projectile with the ability to point detonate, a brass cartridge case loaded with propellant charge, and an electric primer. Government First Article Testing will be required. Work will be performed in Perry, Florida, and is expected to be complete by February 2021. Fiscal 2019, 2018, 10`7 Procurement of Ammunition, Navy and Marine Corps funds in the amount of $10,406,730 will be obligated at award and will not expire at the end of the current fiscal year. This contract was competitively procured with three offers received via the Federal Business Opportunities website. The Naval Surface Warfare Center Indian Head Explosive Ordnance Disposal Technology Division, Indian Head, Maryland, is the contracting activity (N00174-19-C-0006). L-3 KEO, Northampton, Massachusetts, is awarded an $8,665,266 fixed-price-incentive modification to previously awarded contract N00024-15-C-6250 to exercise options for the production of Low Profile Photonics Mast. The low profile photonics mast provides visual and other capabilities for Navy submarines. Work will be performed in Northampton, Massachusetts, and is expected to be complete by March 2021. Fiscal 2019 other procurement (Navy) in the amount of $8,655,266 will be obligated at time of award and will not expire at the end of the current fiscal year. The Naval Sea Systems Command, Washington, District of Columbia, is the contracting activity. Kollsman Inc., Merrimack, New Hampshire, was awarded a $7,251,573 modification (P00001) to delivery order M67854-19-F-1523 on previously awarded firm-fixed-price, indefinite delivery/indefinite quantity contract M67854-15-D-6001 for the purchase of Contractor Logistics Support, 10 Common Laser Range Finder – Integrated Capability (CLRF-IC) systems, 10 Objective Lens Covers, and Retrofit of 396 CLRF-IC systems. Work will be performed at Merrimack, New Hampshire, and is expected to be complete by Dec. 30, 2020. Fiscal 2019 procurement (Marine Corps) funds in the amount of $7,251,573 will be obligated at time of award and will not expire at the end of the current fiscal year. The base contract was competitively awarded via Federal Business Opportunities website with three offers received. The Marine Corps Systems Command, Quantico, Virginia, is the contracting activity (M67854-15-D-6001). (Awarded Feb. 28, 2019) ARMY Tetra Tech Inc., Pasadena, California (W912GB-19-D-0003); AMEC Foster Wheeler E & I GMBH, Frankfurt am Main, Hessen, Germany (W912GB-19-D-0004); and AECOM International Inc., Neu-Isenburg, Hessen, Germany (W912GB-19-D-0005), will compete for each order of the $41,100,000 firm-fixed-price contract for environmental remediation services. Bids were solicited via the internet with nine received. Work locations and funding will be determined with each order, with an estimated completion date of Feb. 29, 2024. U.S. Army Corps of Engineers, Wiesbaden, Germany, is the contracting activity. American Engineers Inc.,* Glasgow, Kentucky (W91237-19-D-0006); Stantec Consulting Services Inc., Lexington, Kentucky (W91237-19-D-0007); and Terracon Consultants Inc., Cincinnati, Ohio (W91237-19-D-0008) will compete for each order of the $20,000,000 firm-fixed-price contract for Dam Safety Modification Mandatory Center of Expertise National Inland Floating Plant and land drilling services. Bids were solicited via the internet with four received. Work locations and funding will be determined with each order, with an estimated completion date of Feb. 29, 2024. U.S. Army Corps of Engineers, Huntington, West Virginia, is the contracting activity. Manson Construction Co., Seattle, Washington, was awarded a $15,476,150 firm-fixed-price contract for Thimble Shoal Channel maintenance dredging project. Bids were solicited via the internet with three received. Work will be performed in Norfolk, Virginia, with an estimated completion date of Aug. 28, 2019. Fiscal 2019 operations and maintenance Army funds in the amount of $15,476,150 were obligated at the time of the award. U.S. Army Corps of Engineers, Norfolk, Virginia, is the contracting activity (W91236-19-C-0007). DEFENSE HEALTH AGENCY Lintech Global Inc., Farmington Hills, Michigan, was awarded a $12,849,369 firm-fixed-price, non-personal services contract to provide data processing, data validation operations and maintenance of the TRICARE Encounter Data/Purchased Care Data Warehouse and Military Health System Data Repository programs, as well as the development, update, enhancement, repair, and testing of specific information technology applications that are managed by the Defense Health Agency, Health Information Technology (HIT) Directorate, Solutions Delivery Division Program Executive Office. The contractor's place of performance is Falls Church, Virginia. This contract has a base period of nine months with one option, if exercised, for a total of 29 months. This contract is an acquisition under GSA's IT Schedule 70 with fiscal 2019 operations and maintenance funds in the amount of $12,849,369 obligated at time of award. The Defense Health Agency, Contract Operations - Health Information Technology (CO-HIT), San Antonio, Texas, is the contracting activity (HT0015-19-F-0032). DEFENSE INFORMATION SYSTEMS AGENCY SES Government Solutions Inc., Reston, Virginia, was awarded a firm-fixed-price contract modification (P00007) to exercise Option Period Four on task order GS-35F-0328V / HC101315F0008 for commercial satellite communications service. The face value of this action is $8,356,608 funded by fiscal 2019 operations and maintenance funds. The total cumulative face value of the task order is $45,264,960. Performance directly supports the U.S. Central Command Southwest Asia Area of Responsibility. Quotations were solicited via the General Services Administration's Federal Supply Schedule, Information Technology Schedule 70, and five quotations were received from 22 offerors solicited. The period of performance for Option Period Four is March 6, 2019, through March 5, 2020, and there no remaining unexercised option periods for this task order. The Defense Information Technology Organization, Scott AFB, Illinois, is the contracting activity. * Small Business ** Mandatory source https://dod.defense.gov/News/Contracts/Contract-View/Article/1772993/

Toutes les nouvelles