21 août 2018 | International, Terrestre

Army Wants 70 Self-Driving Supply Trucks By 2020

By

The Army is ready for unmanned vehicles but not yet for a completely unmanned convoy. The 2020 iteration is called Expedient Leader-Follower because the Army still wants a human soldier driving the lead vehicle, with up to nine autonomous trucks following in its trail. But Oshkosh and Robotic Research told me they could take the humans out altogether, if the Army wanted.

If you find self-driving cars impressive today, think about Army trucks that can drive themselves off-road, in a war zone, less than three years from now.

For all the Army's embrace of high technology, the service still wants the lead vehicle in the convoy to have a human driver, at least at first. But the unmanned trucks that follow behind will need to stick to the trail without relying on street signs, lane markings, pavement, or GPS. They might not even have a clear line of sight to the vehicle ahead of them, which may turn a corner in a city or disappear into a cloud of dust driving cross-country. En route, they have to avoid not only pedestrians, animals, and vehicles, like civilian self-driving cars, but also rubble, rocks, trees, and shell holes. And they have to avoid solid obstacles without stopping every time they see tall grass, a low-hanging branch, or a dust cloud in their path — the kind of common-sense distinction that's easy for humans but very hard for computer vision.

But the Army is confident it can be done. Army Secretary Mark Esper has publicly enthused about the technology after riding in a prototype, saying it could both free up manpower for the front line — most troops work on logistics and maintenance, not in combat units — and save lives from roadside bombs and ambushes — to which supply convoysare particularly vulnerable.

After years of tinkering, the Army has accelerated its Automated Ground Resupply (AGR) program by spinning off something called the Expedient Leader-Follower demonstration. Contractors are currently installing Robotic Research LLC's computer brains and sensors on 10 Oshkosh M1075 PLS (Palletized Loader System) trucks that'll be used for safety certification tests in 2019. They'll convert 60 more to self-driving vehicles in time to equip two Army transportation companies in 2020.

While the two units' main job will be to demonstrate the technology works in field conditions, “if they get called to deploy, they will deploy with the vehicles,” said Alberto Lacaze, president of Robotic Research, in an interview with me yesterday. “That could happen fairly quickly.”

Exactly when the large-scale demo starts in 2020 is still a moving target, based mainly on how 2019's safety testing goes, said Pat Williams, VP for Army and Marine Corps programs at Oshkosh Defense. It's the Army's call on whether to compress the timeline, he told me, but “there's interest in pulling that left where possible.”

Full article: https://breakingdefense.com/2018/08/army-wants-70-self-driving-supply-trucks-by-2020

Sur le même sujet

  • Aircraft carrier Bush gets first-ever Stingray drone control room

    21 août 2024 | International, Aérospatial

    Aircraft carrier Bush gets first-ever Stingray drone control room

    The carrier George H.W. Bush is now the host of an unmanned air warfare center, and more carriers are getting it soon.

  • House bill would block F-22 retirements, keep buying Air Force F-15EXs

    14 mai 2024 | International, Aérospatial

    House bill would block F-22 retirements, keep buying Air Force F-15EXs

    The proposed NDAA would also grant the Air Force's request to retire 56 A-10 Warthogs.

  • A robot as slow as a snail ... on purpose

    20 août 2019 | International, Autre défense

    A robot as slow as a snail ... on purpose

    By: Kelsey D. Atherton Snails and slugs are so commonplace that we overlook the weirdness of how they move, gliding on a thin film across all sorts of terrain and obstacles. Popular imagination focuses on how slow this movement is, the snail defined by its pace, but it is at least as remarkable that the same mechanism lets a snail climb walls and move along ceilings. The movement is novel enough that there is now a snail-inspired robot, sliding across surfaces on an adhesive membrane, powered by a laser. The snail robot, produced by a joint research team at the University of Warsaw Poland, together with colleagues from Xi'an Jiaotong-Liverpool University in Suzhou, China, created a centimeter-long robot powered by light. The research, published July in Macromolecular Rapid Communications, sheds new insight on how animals move in the wild, and on how small machines could be built to take advantage of that same motion. Why might military planners or designers be interested in snail-like movement? The ability to scale surfaces and cling to them alone is worth study and possibly future adaptation. There's also the simple efficiency of a creature that maneuvers on a single, durable foot. “Gastropods' adhesive locomotion has some unique properties: Using a thin layer of mucus, snails and slugs can navigate challenging environments, including glass, polytetrafluoroethylene (PTFE, Teflon), metal surfaces, sand, and (famously) razor blades, with only few super-hydrophobic coatings able to prevent them from crawling up a vertical surface,” write the authors. “The low complexity of a single continuous foot promises advantages in design and fabrication as well as resistance to adverse external conditions and wear, while constant contact with the surface provides a high margin of failure resistance (e.g., slip or detachment).” Snails can literally move along the edge of the spear unscathed. Surely, there's something in a robot that can do the same. The small snail robot looks like nothing so much as a discarded stick of gum, and is much smaller. At just a centimeter in length, this is not a platform capable of demonstrating much more than movement. The machine is made of Liquid Crystalline Elastomers, which can change shape when scanned by light. Combined with an artificial mucus later formed of glycerin, the robot is able to move, climb over surfaces, and even up a vertical wall, on a glass ceiling, and over obstacles, while it is powered by a laser. It does all of this at 1/50th the speed a snail would. This leaves the implications of such technology in a more distant future. Imagine a sensor that could crawl into position on the side of a building, and then stay there as combat roars around it. Or perhaps the application is as a robot adhesive, crawling charges into place at the remote direction of imperceptible light. Directing a robot into an unexpected position, and having it stay there with adhesive, could be a useful tool for future operations, and one that would be built upon research like this. The robot may be comically slow now. The pace of the technologies around it is not. https://www.c4isrnet.com/unmanned/robotics/2019/08/19/do-snail-robots-foreshadow-the-sticky-grenades-of-the-future/

Toutes les nouvelles