27 décembre 2018 | International, Aérospatial, C4ISR

Air Force to accelerate deployment of anti-jam satellite communications equipment

by

The Air Force is developing software and ground equipment to boost the protection of the Wideband Global satcom system. First in line for the upgrade are naval carrier strike groups. The Navy will get the new technology in 2022, about 18 months sooner than previously planned.

WASHINGTON — The Air Force is cyber hardening military satellite communications equipment amid worries that foreign hackers could infiltrate U.S. networks.

“Adversaries are getting better and more able to penetrate our unclassified or barely protected systems,” said Col. Tim Mckenzie chief of the advanced development division for military satellite communications at the Air Force Space and Missile Systems Center.

The bulk of military satcom services are provided by the Air Force Wideband Global Satcom, or WGS, satellites and by commercial operators. All these systems require additional protection from cyber attacks, Mckenzie told SpaceNews in a recent interview.

“Commercial satcom as well as our own purpose-built Wideband satellites were never designed to provide protection against some of the things we expect our adversaries to do in the near future,” he said.

In response, the Air Force is developing software and satcom ground equipment to boost the protection of WGS networks in the near term, and commercial systems at a later time. First in line for these upgrades are the Navy's aircraft carrier strike groups in the Pacific, Mckenzie said. The Air Force will have this technology available for carrier strike groups in 2022, about 18 months sooner than previously planned.

The central piece of the cyber security upgrade is anti-jam communications software — called the Protected Tactical Waveform (PTW). A ground system, the Protected Tactical Enterprise Service (PTES) will manage the transmission of the waveform over WGS satellites and terminals.

Boeing, which manufactures the WGS satellites, was awarded a seven-year, $383 million contract in November to develop the PTES.

“We are doing agile software development to enable early use of the PTW capability,” said Mckenzie.

The anti-jam software and ground system only will work initially with WGS networks, said Mckenzie. If a commercial provider opted to use the PTW waveform, the ground system could be updated to interoperate with that vendor's network.

Military satcom users will need to upgrade their satellite terminals with new modems to operate the PTW waveform. The Air Force two years ago awarded three contracts — $39 million to Raytheon, $38 million to L3 and $33 million to Viasat — to develop prototype modems. The Army, Navy and Air Force will run separate competitions to decide which modems they will acquire for their specific terminals. For carrier strike groups, the Navy will have to buy PTW-capable modems to upgrade its satellite terminals aboard ships.

In the long term, the plan is to add a new space component — either newly designed spacecraft or military communications payloads hosted on commercial buses. “Our goal is to have some protected tactical satcom prototype payloads on orbit in the fiscal year 2025 time frame,” said Mckenzie.

Whatever new hardware makes up the space segment, it will be compatible with the PTES ground equipment, he said. Mckenzie noted that the Air Force has been criticized for deploying satellites before the ground equipment is available. The PTW and PTES efforts reverse that trend. “We have learned lessons from being out of sync with terminals on the ground,” Mckenzie said. “We've been working for the last several years to develop modem upgrades that can be put into our existing terminals so we have terminals that can use PTW.”

To get fresh thinking on how to develop a secure satcom system, the Air Force Space Enterprise Consortium is funding four design and prototyping projects. These are four areas “where we're trying o reduce risk,” said McKenzie. The consortium was stood up in 2017 and given authorities to kick start projects with far less red tape than traditional Pentagon contracting. Mckenzie said the Air Force is interested in new ideas for constellation architectures, payload hosting concepts, advanced space processing and antenna designs.

McKenzie expects contracts for the development of protected tactical satcom payloads will be awarded in fiscal year 2020, with a goal to start launching new systems into orbit by 2025.

Boeing, Northrop Grumman, Raytheon and X-Band LLC have entered into cost-sharing agreements with the Air Force — contracts known as Other Transactions Authority — to map out constellation sizes, layouts, design lives, and concepts such as hosting of military payloads as a commercial service.
Boeing, Lockheed Martin, Northrop Grumman and SSL have signed OTA agreements to develop phased arrays and array fed reflectors antennas.

BAE Systems, L3 and SEAKR Engineering received OTA deals to investigate requirements for secure satcom applications such as geo-location, waveform processing, and anti-jam. Boeing and Southwest Research Institute are studying hosting concepts, such as identifying interface commonalities between commercial and military bus providers and recommends ways to simplify the integration.

Tom Becht, military satcom director at the Air Force Space and Missile Systems Center, said the protected tactical satcom effort has been underway for more than eight years and now is being accelerated as the Air Force seeks to respond to military commanders' needs in a more timely fashion. “The demand for protected satcom has significantly increased,” Becht said in an interview.

After the PTW, PTES and the new space segment are deployed, the next step will be to modernize the military's nuclear-hardened strategic satcom system, the Advanced Extremely High Frequency constellation. Most of the users of the AEHF system are tactical operators and the Pentagon eventually wants to have a dedicated strategic satcom constellation for nuclear command and control. “Tactical users will transition to the Protected Tactical Satcom system,” said Becht.

That transition could take decades, he said. “The aggregated [tactical and strategic] AEHF will be around until the mid 2030s or a bit longer.”

https://spacenews.com/air-force-to-accelerate-deployment-of-anti-jam-satellite-communications-equipment

Sur le même sujet

  • ‘Smaller, better, cheaper’ — the rise of portable drone interceptors

    20 février 2023 | International, Aérospatial

    ‘Smaller, better, cheaper’ — the rise of portable drone interceptors

    As drones swarm modern battlefields, so do technologies for taking them down.

  • This is Knight’s Armament’s new machine gun suppressor

    19 juillet 2019 | International, Autre défense

    This is Knight’s Armament’s new machine gun suppressor

    Knight's Armament Company of Titusville, Florida, unveiled a new suppressor at this year's Special Operations Forces Industry Conference where members of the SOF community get to interact with vendors and industry partners to preview and try out the latest and greatest in special operations kit and gear. KAC's suppressor is designed primarily to be used with the company's premier belt-fed Light Assault Machine Gun platform, chambered for 5.56 NATO and marketed more towards the SOF and private military contractor communities than to conventional infantry forces. True to its name, the LAMG is indeed very light, weighing only 8.6 pounds unloaded. In comparison, the M249 Squad Automatic Weapon weighs in at 17 pounds unloaded. According to KAC, one of the LAMG's biggest selling points is its ability to put down a high volume of fire with a low cyclic rate of just around 575-625 rounds per minute, allowing the end user to maintain a greater degree of control over the weapon and concentrate accurate fire on target. The suppressor, delivered in kit form, mounts to a threaded barrel included in the kit, and makes heavy use of a unique Pressure Reduction Technology system, which vents the gasses from each shot forward, preventing the gas from venting backwards into the shooter's face. Additionally -- and probably its best feature -- the PRT system allows the LAMG to keep its factory cyclic rates during sustained fire without any major dips. The LAMG is currently available to defense buyers, which means that the new suppressor will likely only be targeted towards military sales. At the moment, US SOCOM doesn't list the LAMG in its belt-fed arsenal, though it's possible that there are foreign SOF units that make use of KAC's innovative light machine gun platform, and might potentially avail of a sustained fire suppressor. https://www.militarytimes.com/off-duty/gearscout/irons/2019/07/09/this-is-knights-armaments-new-machine-gun-suppressor/

  • US Air Force eyes KC-46A aerial refuelling boom redesign

    31 janvier 2019 | International, Aérospatial

    US Air Force eyes KC-46A aerial refuelling boom redesign

    Pat Host, Everett, Washington - Jane's Defence Weekly Key Points The US Air Force is planning to redesign the KC-46A boom to better accommodate lighter aircraft The USAF agreed to pay for this upgrade as Boeing met its international standard The US Air Force (USAF) will redesign the problematic boom on the Boeing KC-46A Pegasus aerial refuelling tanker to better accommodate lighter aircraft such as the Fairchild-Republic A-10 Thunderbolt II. USAF Secretary Heather Wilson said on 24 January that the boom does not disconnect as well from lighter aircraft as it does with heavier aircraft. The service has identified an actuator fix that will make the boom a little more sensitive, and she believes it is likely that the A-10 is the only aircraft affected by this issue. The A-10 is a lighter aircraft compared with some of the USAF's other aircraft such as transports, bombers, and even other tactical combat aircraft. The Lockheed Martin C-130H Hercules weighs 34,686 kg empty and the A-10 weighs 9,183 kg empty, while the Lockheed Martin F-35A Lightning II Joint Strike Fighter (JSF) weighs 13,290 kg empty. At Boeing's KC-46A first delivery ceremony, Wilson said that the USAF is paying for the boom redesign as it meets the international standard that the service gave to Boeing. In the deal reached in mid-January over the first delivery, the USAF agreed to pay for the boom fix while Boeing would pay for upgrading the remote vision system (RVS). Boeing is planning both hardware and software fixes to the RVS to allow it to automatically adjust and operate effectively in both the sun's glare and in shadow. Wilson also said that this boom redesign will be the first programme change in the history of the KC-46A. https://www.janes.com/article/86037/us-air-force-eyes-kc-46a-aerial-refuelling-boom-redesign

Toutes les nouvelles