Back to news

January 18, 2024 | International, Land

US Minuteman III missile replacement breaks $96 billion budget, triggers Pentagon review

On the same subject

  • How Army Futures Command plans to grow soldiers’ artificial intelligence skills

    May 29, 2020 | International, C4ISR

    How Army Futures Command plans to grow soldiers’ artificial intelligence skills

    By: Aaron Mehta WASHINGTON — With artificial intelligence expected to form the backbone of the U.S. military in the coming decades, the Army is launching a trio of new efforts to ensure it doesn't get left behind, according to the head of Army Futures Command. While speaking at an event Wednesday hosted by the Defense Writers Group, Gen. Mike Murray was asked about areas that need more attention as his command works to modernize the force. Murray pointed to a change in how the service does long-term planning, as well as two personnel efforts that could pay off in the long run. The first is something Murray has dubbed “Team Ignite,” which he described as “ad hoc, right now,” with a hope to formalize the process in the future. In essence, this means bringing in the teams that write the concept of operations for the military and having them work next to the technologists driving research and development efforts so that everything is incorporated early. “It has occurred to me for a long time that when we prepare concepts about how we will fight in the future, they are usually not informed by scientists and what is potentially out there in terms of technology,” Murray said. “And when we invest in technologies, rarely do we consult the concept writers to understand what type of technology will fundamentally change the way we fight in the future.” In Murray's vision, this means soon there will be “a concept writer saying, ‘If only I could [do something we can't do now], this would fundamentally change the way we would fight,' and a scientist or technologist saying, ‘Well, actually we can, you know, another 10-15 years,' and then vice versa,” he said. “Really using that to drive where we're investing our science and technology dollars, so that in 10 or 15 years we actually can fundamentally change the way we're going to fight.” The Futures Command chief also laid out two new efforts to seed understanding of AI throughout the force, saying that “a key component of the Army moving more and more into the area of artificial intelligence is the talent that we're going to need in the formation to do that.” Murray described a ”recently approved” masters program to be run through Carnegie Mellon University, focusing on bringing in “young officers, noncommissioned officers and warrant officers” to teach them about artificial intelligence. The course features four to five months of actual learning in the classroom, followed by five or six months working for the Army's AI Task Force. After that, the officers are sent back the force, bringing with them their AI experience. Additionally, Murray is in the early stages of standing up what he described as a “software factory” to try and identify individual service members who have some computer skills, pull them out of their normal rotations and give them training on “basic coding skills” before sending them back to the force. “We're going to need a lot of these types of people. This is just [the] beginning, to seed the Army with the types of talent we're going to need in the future if we're going to take advantage of data, if we're going to take advantage of artificial intelligence in the future,” he said. https://www.defensenews.com/land/2020/05/28/how-army-futures-command-plans-to-grow-ai-skills-in-the-service/

  • A future Bradley replacement and a new troop vehicle | Defense News Weekly Full Episode, 10.16.21

    October 18, 2021 | International, Land

    A future Bradley replacement and a new troop vehicle | Defense News Weekly Full Episode, 10.16.21

    See the newest tech and hear from leadership in this special episode of Defense News Weekly covers the Association of the U.S. Army conference.

  • Future US Navy weapons will need lots of power. That’s a huge engineering challenge.

    June 26, 2018 | International, Naval

    Future US Navy weapons will need lots of power. That’s a huge engineering challenge.

    David B. Larter WASHINGTON ― The U.S. Navy is convinced that the next generation of ships will need to integrate lasers, electromagnetic rail guns and other power-hungry weapons and sensors to take on peer competitors in the coming decades. However, integrating futuristic technologies onto existing platforms, even on some of the newer ships with plenty of excess power capacity, will still be an incredibly difficult engineering challenge, experts say. Capt. Mark Vandroff, the current commanding officer of the Carderock Division of the Naval Surface Warfare Center and the former Arleigh Burke-class destroyer program manager who worked on the DDG Flight III, told the audience at last week's American Society of Naval Engineers symposium that adding extra electric-power capacity in ships currently in design was a good idea, but that the weapons and systems of tomorrow will pose a significant challenge to naval engineers when it comes time to back-fit them to existing platforms. “Electrical architecture on ships is hard,” Vandroff said. Vandroff considered adding a several-megawatt system to a ship with plenty of power to spare, comparing it with simultaneously turning on everything in a house. “When you turn everything on in your house that you can think of, you don't make a significant change to the load for [the power company],” Vandroff explained. “On a ship, if you have single loads that are [a] major part of the ship's total load, [it can be a challenge]. This is something we had to look at for DDG Flight III where the air and missile defense radar was going to be a major percentage of the total electric load ― greater than anything that we had experienced in the previous ships in the class. That's a real technical challenge. “We worked long and hard at that in order to get ourselves to a place with Flight III where we were confident that when you turned things on and off the way you wanted to in combat, you weren't going to light any of your switchboards on fire. That was not a back-of-the-envelope problem, that was a lot of folks in the Navy technical community ... doing a lot of work to make sure we could get to that place, and eventually we did.” In order to get AMDR, or SPY-6, installed on the DDG design, Vandroff and the team at the DDG-51 program had to redesign nearly half the ship — about 45 percent all told. Even on ships with the extra electric-power capacity, major modifications might be necessary, he warned. “We're going to say that in the future we are going to be flexible, we are going to have a lot of extra power,” Vandroff said. “That will not automatically solve the problem going forward. If you have a big enough load that comes along for a war-fighting application or any other application you might want, it is going to take technical work and potential future modification in order to get there.” Even the powerhouse Zumwalt class will struggle with new systems that take up a large percentage of the ship's power load, Vandroff said. “Take DDG-1000 ― potentially has 80-odd megawatts of power. If you have a 5- or 6-megawatt load that goes on or off, that is a big enough percentage of total load that it's going to be accounted for. Electrical architecture in the future is still an area that is going to require a lot of effort and a lot of tailoring, whatever your platform is, to accommodate those large loads,” he said. In 2016, when the Navy was planning to install a rail gun on an expeditionary fast transport vessel as a demonstration, service officials viewed the electric-power puzzle as the reason the service has not moved more aggressively to field rail gun on the Zumwalt class. Then-director of surface warfare Rear Adm. Pete Fanta told Defense News that he wanted to move ahead with a rail gun demonstration on the JHSV because of issues with the load. “I would rather get an operational unit out there faster than do a demonstration that just does a demonstration,” Fanta said, “primarily because it will slow the engineering work that I have to do to get that power transference that I need to get multiple repeatable shots that I can now install in a ship.” https://www.defensenews.com/naval/2018/06/24/future-navy-weapons-will-need-lots-power-thats-a-huge-engineering-challenge/

All news