Back to news

June 26, 2018 | International, Naval

Future US Navy weapons will need lots of power. That’s a huge engineering challenge.

WASHINGTON ― The U.S. Navy is convinced that the next generation of ships will need to integrate lasers, electromagnetic rail guns and other power-hungry weapons and sensors to take on peer competitors in the coming decades.

However, integrating futuristic technologies onto existing platforms, even on some of the newer ships with plenty of excess power capacity, will still be an incredibly difficult engineering challenge, experts say.

Capt. Mark Vandroff, the current commanding officer of the Carderock Division of the Naval Surface Warfare Center and the former Arleigh Burke-class destroyer program manager who worked on the DDG Flight III, told the audience at last week's American Society of Naval Engineers symposium that adding extra electric-power capacity in ships currently in design was a good idea, but that the weapons and systems of tomorrow will pose a significant challenge to naval engineers when it comes time to back-fit them to existing platforms.

“Electrical architecture on ships is hard,” Vandroff said.

Vandroff considered adding a several-megawatt system to a ship with plenty of power to spare, comparing it with simultaneously turning on everything in a house.

“When you turn everything on in your house that you can think of, you don't make a significant change to the load for [the power company],” Vandroff explained. “On a ship, if you have single loads that are [a] major part of the ship's total load, [it can be a challenge]. This is something we had to look at for DDG Flight III where the air and missile defense radar was going to be a major percentage of the total electric load ― greater than anything that we had experienced in the previous ships in the class. That's a real technical challenge.

“We worked long and hard at that in order to get ourselves to a place with Flight III where we were confident that when you turned things on and off the way you wanted to in combat, you weren't going to light any of your switchboards on fire. That was not a back-of-the-envelope problem, that was a lot of folks in the Navy technical community ... doing a lot of work to make sure we could get to that place, and eventually we did.”

In order to get AMDR, or SPY-6, installed on the DDG design, Vandroff and the team at the DDG-51 program had to redesign nearly half the ship — about 45 percent all told. Even on ships with the extra electric-power capacity, major modifications might be necessary, he warned.

“We're going to say that in the future we are going to be flexible, we are going to have a lot of extra power,” Vandroff said. “That will not automatically solve the problem going forward. If you have a big enough load that comes along for a war-fighting application or any other application you might want, it is going to take technical work and potential future modification in order to get there.”

Even the powerhouse Zumwalt class will struggle with new systems that take up a large percentage of the ship's power load, Vandroff said.

“Take DDG-1000 ― potentially has 80-odd megawatts of power. If you have a 5- or 6-megawatt load that goes on or off, that is a big enough percentage of total load that it's going to be accounted for. Electrical architecture in the future is still an area that is going to require a lot of effort and a lot of tailoring, whatever your platform is, to accommodate those large loads,” he said.

In 2016, when the Navy was planning to install a rail gun on an expeditionary fast transport vessel as a demonstration, service officials viewed the electric-power puzzle as the reason the service has not moved more aggressively to field rail gun on the Zumwalt class.

Then-director of surface warfare Rear Adm. Pete Fanta told Defense News that he wanted to move ahead with a rail gun demonstration on the JHSV because of issues with the load.

“I would rather get an operational unit out there faster than do a demonstration that just does a demonstration,” Fanta said, “primarily because it will slow the engineering work that I have to do to get that power transference that I need to get multiple repeatable shots that I can now install in a ship.”

https://www.defensenews.com/naval/2018/06/24/future-navy-weapons-will-need-lots-power-thats-a-huge-engineering-challenge/

On the same subject

  • The Space Force considers a new mission: tactical satellite imagery

    February 5, 2021 | International, Aerospace, C4ISR

    The Space Force considers a new mission: tactical satellite imagery

    Nathan Strout WASHINGTON — The U.S. Space Force is still in its early days, but leaders are already considering adding a new mission for Guardians: providing tactical satellite imagery for beyond-line-of-sight targeting. “That's something that we're thinking through as we speak. I've got a group of folks doing some work on what that design might look like,” Gen. John “Jay” Raymond, the chief of space operations, said Feb. 3 during a Defense Writers Group call. The Space Force, like Air Force Space Command before it, provides the GPS signal, missile warning information, and wideband communications with its on orbit satellites. Tactical satellite imagery, however, has not been part of its workload. “That's largely been more on the intelligence community side,” Raymond said. Specifically, satellite imagery is generally the responsibility of two intelligence agencies: the National Reconnaissance Office and the National Geospatial-Intelligence Agency. While the NRO builds and operates the nation's spy satellites and contracts with commercial providers to access their imagery, NGA sets imagery requirements and transforms that raw satellite data into intelligence products. The military typically relies on NGA for geospatial intelligence (GEOINT) products. “I do think as technology has allowed for smaller satellites to be more operationally relevant and you can do so at a price point that is cheaper, that there is a role for operational level tactical satellites as you described and that the Space Force would have a role in that,” Raymond said “Again, it's early in the study efforts, if you will, and whatever we do we'll make sure that we do it in close partnership with our intelligence partners, because what we don't want to do is duplicate efforts,” he continued. “We want to save dollars and reduce taxpayer dollars, not duplicate.” The proliferation of small and relatively affordable small imaging satellites and the growing commercial satellite imagery market has sparked interest at the Pentagon in using satellites for beyond-line-of-sight (BLOS) targeting. The U.S. Army has been at the forefront of that effort, launching its own small imaging satellite — Kestrel Eye — in 2017. More recently at the Project Convergence 2020 exercise, the Army used commercial satellite imagery to develop targeting data and shoot at BLOS threats. The Air Force and the Navy are also investing in tactical GEOINT products. The Air Force Research Laboratory is investing in commercial tactical GEOINT software to help them find moving targets with satellite imagery, while the Navy is paying for commercial synthetic aperture radar imagery and analytics. Elsewhere in the Department of Defense, the Space Development Agency has set BLOS targeting as one of the main capabilities it is pursuing for its new proliferated constellation in low Earth orbit, which will eventually be made up of hundreds of satellites. “That's where the Army is most affected and that's where we're working very closely with the Army to make sure that we're tied together. So this is the ability to detect and track and maintain custody of anything, say, larger than a truck and to be able to actually give a targeting fire control solution to a weapon in the field in real time anywhere on the globe,” SDA Director Derek Tournear said in 2019. “That's the goal. That's the capability.” The SDA is slated to become part of the Space Force in late 2022. https://www.c4isrnet.com/battlefield-tech/space/2021/02/03/the-space-force-is-considering-adopting-a-tactical-geoint-mission/

  • Cubic Awarded Contract from Naval Air Systems Command for KnightLink Systems

    February 22, 2024 | International, Naval

    Cubic Awarded Contract from Naval Air Systems Command for KnightLink Systems

    The KnightLink software provides a wide range of capabilities and video support including operational, vendor, flight test, laboratory aid and maintenance

  • The unlikely tool that’s improving physical security at military bases

    April 23, 2018 | International, Security

    The unlikely tool that’s improving physical security at military bases

    By: Adam Stone From their perch in the operations center at the Navy Yard in Washington, D.C., security analysts peer down like hawks over the Naval Research Lab, Walter Reed National Military Medical Center Joint Base Anacostia-Bolling and a half-dozen other major military installations scattered around the national capital region. It takes just 10 people to maintain constant surveillance over all those disparate sites, “but you need machines to help you,” said Robert Baker, command information officer for the Naval Facilities Engineering Command. Those machines include a complex network of cameras and sensors, supported by analytics software. When the software spots a suspect event – traffic headed in the wrong direction, for example – that video feed gets pushed to the foreground for human analysis. This is just one example of how the military looks to technology to improve physical security. The real-world influence of technology is evident across the military: Everything from targeting systems to logistics to intelligence, surveillance and reconnaissance has been enhanced in some way by IT. Physical security represents an emerging frontier, where artificial intelligence, machine learning, autonomous technologies and other advances could give the military an edge. Force multiplier At Edwards Air Force Base in California last summer, a security team installed a ground-based radar system to monitor a wide landscape using electro-optical and infrared sensors. The team turned to technology to give them insight across a massive 308,000-acre facility. “The driving need for this system is to proactively defend Edwards AFB. Given the mission of Edwards, and how much terrain we have, we need a system that can overcome the difficulties of patrolling the vast amount of land Edwards presents to our patrols,” Staff Sgt. Alexander Deguzman, an installation security technician with the 412th security forces squadron said in a news release. As at the Navy Yard, the effort at Edwards is all about using some combination of remote sensing, networked surveillance and machine intelligence to create a force multiplier in physical security. Analysts say such initiatives could make bases and installations markedly safer at a lower cost and with less labor required. The rise of artificial intelligence is a critical technology moving forward. Security often involves the constant observation of multiple video and data feeds for prolonged periods of time. Human analysts get tired. They look away for a moment. In short, they miss stuff. “A human can look at things once or twice, but after 100 times they start to lose their edge,” said retired Air Force Lt. Gen. Bob Elder, chair of the cyber and emerging technologies division at the National Defense Industrial Association. “AI goes beyond what a human can do, because it doesn't get tired.” Elder envisions a future in the near-term in which routine surveillance can be carried out by software-supported machines, with computers scanning for anomalies and alerting human analysts to potential threats. That saves on labor. In addition, such as approach also would allow the military to use less highly-skilled operators, relying instead on the machine's expertise and accuracy. Eyes in the sky Industry's interest in this subject has helped bring AI and autonomy to the fore as potential security assets. With the rise of the drones and the imminent arrival of driverless cars, some experts are looking to autonomy as the next logical step in military security. Drones alone don't offer a security fix: Their batteries run down too fast. The military might however consider the use of tethered drones, autonomous ISR assets that can hover in place and remain attached to a power source for ongoing operations. Put one at each corner of a base camp and leaders can put together a big-picture view of any approaching hazard. “This kind of solution is really smart, because you can constantly feed it power, you don't have to worry about it flying away, and if someone tries to damage it or take control of it, you know about it right away,” said Steve Surfaro, chairman of the Security Industry Association public safety working group. Another key industry trend, biometrics, may also point the way forward on physical security. “Investing in facial recognition software ... can improve perimeter security by automating aspects of it to speed up entry to bases for those authorized and focus screening attention on those that represent a risk,” according to a Deloitte report on smart military bases titled “Byting the Bullet.” The networking needs To make the most of the technological imperative around security, experts say, the military will have to give serious thought to issues of infrastructure. Security is becoming a data function: Sensor streams, video feeds, drone surveillance and other methodologies all will require robust network support and substantial compute resources. The data will need to flow freely, even in great quantities, with ample processing available to put it to use. Much of the processing will be done in the cloud, “but you still need to have a reliable connection to that cloud, which means you want diversity and redundancy. At a minimum you want two connections and ideally you want three ways of doing it – wires, line of sight wireless, and satellite,” Elder said. “You need a reliable way to get to your cloud services.” Such an implementation will require, at the least, a significant amount of bandwidth. At the Navy Yard, Baker said he is able to overcome that hurdle through thoughtful network design. In other words: Rather than pushing all the information back to the operations center for processing, new video and sensor analytics takes place on the edge, shrinking the overall networking demand. “The more processing you can do at the edge of the network, the less robust your network needs to be,” he said. Efficient network design weeds out routine activity “and then the really interesting information is being sent for human analysis.” While emerging technologies can enhance the military's security operations, some argue that IT capabilities are not, in themselves, a rationale for upgrading systems that may already be meeting mission. Budgetary constraints apply. “You could make processing faster, but what is the threat that we are trying to counter? If we are seeing zero incidents, why we would gold-plate that area? We want to be good stewards of the taxpayer dollars,” Baker said. “At the same time, if there was some high-risk area where we needed to do that better, we would absolutely want to put resources against that.” https://www.c4isrnet.com/it-networks/2018/04/12/the-unlikely-tool-thats-improving-physical-security-at-military-bases/

All news