Back to news

September 14, 2023 | International, Land

Surveillance flights, not counterterrorism ops, restarted in Niger

The Pentagon says it has not restarted counterterrorism operations in Niger, a day after Air Force Gen. James Hecker said those flights had resumed.

https://www.defensenews.com/news/pentagon-congress/2023/09/14/surveillance-flights-not-counterterrorism-ops-restarted-in-niger/

On the same subject

  • Oshkosh robot trucks could roll out to the Army by 2020

    October 9, 2018 | International, Land

    Oshkosh robot trucks could roll out to the Army by 2020

    By: Kelsey Atherton Simple subtraction explains the impetus for self-driven supply convoys: For every autonomously driven vehicle, that's one fewer human driver needed, and likely one or two fewer human escorts in the vehicle itself. Fewer humans means fewer injuries and deaths whenever the convoy encounters violence, like an ambush or an improvised explosive device. Then there is multiplication: Take the driver and the escorts out of each truck in a seven-truck convoy, and that's suddenly 14 to 21 soldiers that can do other tasks, like escorting the convoys in other, better-armored vehicles, ones that can withstand IEDs or provide more protection from small arms fire. In June, the U.S. Army awarded Oshkosh Defense $49 million to integrate autonomous technology with the Palletized Load System vehicles in order to put robotics in the driver's seat. “It actually drives very, very human,” says John Beck, senior chief engineer for unmanned systems at Oshkosh. “The motion control algorithms that are done both on the by-wire side and on the autonomy side drive this vehicle much like a person does.” Full article: https://www.c4isrnet.com/digital-show-dailies/ausa/2018/10/07/oshkosh-robot-trucks-could-roll-out-to-the-army-by-2020/

  • The Spanish Air Force Buys PC-21 Training System Including 24 Aircraft

    January 31, 2020 | International, Aerospace

    The Spanish Air Force Buys PC-21 Training System Including 24 Aircraft

    January 31, 2020 - The Spanish Air Force, Ejército del Aire, is the third European air force to opt for the Swiss-produced PC-21, the Next Generation Trainer. Pilatus has committed to delivering a total of 24 PC-21s to Spain. The single-engine turboprop trainer aircraft will replace the Casa C-101 jet trainers used since 1980. The Ministry of Defence was looking for a new, highly efficient training platform to provide advanced training for Spain's future military pilots tasked with protecting future generations. After a long and extremely professional evaluation, Pilatus beat several prestigious competitors to win the tender with the PC-21. The contract, which is worth over 200 million euros, was signed yesterday evening with the Spanish Dirección General de Armamento y Material (DGAM). Comprising an integrated training system, the order includes simulators developed and produced by Pilatus, spare parts and logistics support in addition to the PC-21 aircraft. Oscar J. Schwenk, Chairman of Pilatus, is enthusiastic about this major order from Spain: “As a small Swiss aircraft manufacturer I'm delighted at our repeated success in winning through over large, international competitors. This result is proof that, with our PC-21, we can deliver the very best training system in the world.” Pilot training starts in 2021 The PC-21 will provide Spain with the most advanced training system currently on offer, and will also deliver a cost-effective, ecologically viable training platform. Experience with existing PC-21 customers has shown that the cost of training for a military pilot can be reduced by over 50 percent with the PC-21. These single-engine turboprop aircraft require much less fuel than any comparable jet trainer. Oscar J. Schwenk commented further: “I'm delighted to see us win a new air force to add to our existing customer portfolio. We shall provide Ejército del Aire with the first-class customer service they are entitled to expect from Pilatus. Bienvenidos a Pilatus y muchas gracias por elegir el PC-21 – viva España!” About the PC-21 success model For years, people believed that single-engine turboprops would never replace jet trainers. But with defence budgets coming under increasing pressure, air forces are looking for new ways of managing and maintaining their complex systems in mission-ready condition. Seeking to support this change, Pilatus developed performance-related services specifically tailored to the PC-21 Training System. The goal is to ensure an affordable product to match the performance criteria defined by air force customers. That is achieved by providing a highly sophisticated and integrated service package in line with current air force requirements. Prestigious air forces around the world have chosen the cost-effective, highly efficient training platform created by Pilatus. They are the proof that the PC-21 is the training system of the future. Since 2006, with the order for Spain, Pilatus has already sold 235 PC-21s to nine air forces – including Singapore, Switzerland, the United Arab Emirates, France and Australia. View source version on Pilatus: https://www.pilatus-aircraft.com/en/news-events/media-release/the-spanish-air-force-buys-PC-21-training-system-including-24-aircraft

  • Navy Refining How Data Analytics Could Predict Ship Maintenance Needs

    June 25, 2019 | International, Naval

    Navy Refining How Data Analytics Could Predict Ship Maintenance Needs

    By: Ben Werner WASHINGTON, D.C. – Extending the lifespans of existing ships using data-driven maintenance efforts is the best strategy for achieving a 355- ship navy, said the Naval Sea Systems Command chief engineer. The key to maintaining ships and enabling the Navy to extend their lifespans is data analytics, Rear Adm. Lorin Selby, the chief engineer and deputy commander of ship design, integration and naval engineering at NAVSEA, said Thursday at the American Society of Naval Engineers' annual Technology, Systems & Ship symposium. “I have ships with a number of sensors on them, measuring things like reduction gears, showering components, turbines, generators, water jets, air conditioning plants, high packs, a number of components, and we're actually pulling data off those ships, in data acquisition systems,” Selby said. At the Naval Surface Warfare Center Philadelphia Division, Selby's team is analyzing data gleaned from smaller ship component operations to determine how often such components need servicing, oil changes, filter changes, other maintenance actions and replacement. The process is called condition-based maintenance plus (CBM+), and Selby wants CBM to drive improvements in maintaining ships. “That's one of the things we're doing to get after utilizing the technology we have today to operate the ships we have today more efficiently and more effectively,” Selby said. The Navy has dabbled with CBM for years. A 2008 Department of Defense Conditions Based Maintenance Plus guidebook mentions NAVSEA efforts. However, two years ago at the ASNE TSS symposium, NAVSEA Commander Vice Adm. Tom Moore told USNI News that the Navy's use of CBM had perhaps gone too far and was disrupting the shipyards' ability to plan for large maintenance jobs properly. During previous attempts at incorporating CBM, there was a thought that, if major efforts like refurbishing tanks were only done when needed, rather than on a predetermined timetable, the Navy could avoid spending time and money on work ahead of need. However, that also meant that shipyards wouldn't have a clear work package before a ship showed up at the pier, adding uncertainty and, ultimately, more time and cost into the maintenance availability. This time around, Selby sees condition-based maintenance as a way to address smaller maintenance items in such a way that data analysis points a ship crew to components that are experiencing minor performance issues or otherwise showing signs they are about to fail before the failure actually occurs. This summer, a pilot program using enterprise remote monitoring will occur on an Arleigh Burke-class destroyer, he said. Data collected will be sent for analysis, and operators will learn how to use the data to understand how their systems are performing and if maintenance or repairs are needed. Selby wants to have a system of apps the Navy can use to collect data from ship components, analyze the data, share it with operators and schedule work. He wants to hold a competition for app developers to create apps the Navy will test for use in the fleet. Describing his vision, Selby said, “the systems that will be monitoring, say the turbine; it will tell the operators when a work procedure has to be performed and it will also then tap into the work package side of the house and generate a work package that gets sent to the ship, to the work center, to do the work. And if there's a part involved, it will be able to pull a part from the supply system.” Testing is occurring now, but Selby concedes there are some obstacles the Navy has to overcome before large-scale deployment. The Navy is struggling with how to transmit data securely, something Selby discussed during an earlier session at the symposium. The data also has to be secured. “The performance of any given asset is something we want to hold close. So I think what you have to do is you have to architect this from kind of the get-go with that kind of security mindset in mind,” Selby said. “You can harvest that data and you could potentially discover vulnerabilities, so you have to protect that. That's part of my project: as I do this, we're bringing that security aspect into the program.” Extending the lifespan of the Navy's current fleet is essential if the Navy is going to grow to 355-ships, Moore said during his keynote address after Selby spoke Thursday. The Navy, military planners at the Pentagon, the White House and lawmakers are all anxious to reach 355 ships as soon as possible because Moore said current forces are stretched too thin. “We in the Navy, we don't have enough forces to go everywhere we need to go, and we have a pretty fragile mix of ships, so that when we miss an availability coming out on time, or we don't build something to the schedule they're supposed to build to, there are real-world consequences to that,” Moore said. The true determining factor of whether a ship's lifespan can be extended, Moore said, is the platform's flexibility. The Arleigh Burke-class is the Navy's workhorse today because, during the past 30 years, the Navy has successfully updated its operating systems. Moving forward, Moore said extending the life of the ships in this class means back-fitting many of the older Flight I and Flight II with a scaled-back version of the AN/SPY-6(V) Air and Missile Defense Radar (AMDR) to keep these ships relevant to current and future mission needs. “If you're willing to do the maintenance on the ships, from a hull and mechanical perspective, you absolutely can keep them longer,” Moore said. “The issue is really not can you keep them 50 years; the issue is can they maintain combat relevance. If they can maintain combat relevance, we know we can keep them longer.” https://news.usni.org/2019/06/24/navy-refining-how-data-analytics-could-predict-ship-maintenance-needs

All news