Back to news

August 3, 2020 | International, C4ISR, Security

Soldiers tout new network tool as a ‘game changer’

The Army's first iteration of new network tools, known as Capability Set '21, was heavily influenced by existing network gaps identified by the 82nd Airborne on more than a year's worth of deployments.

According to Capt. Brian Delgado, S6 of the 82nd Airborne Division's 1st Brigade Combat Team, the “biggest game changer” for soldiers in the field provided in the integrated tactical network kit of Capability Set '21 was the secure but unclassified environment.

The SBU environment allows soldiers to more easily share and receive information. In the current network, information that flows through the network is classified, and many lower-level users don't have proper clearances.

“Army operational construct requires battalion formations to conduct combined arms missions, but today's network does not support the battalion's organic capacity to deconflict an air picture, nor an ability to combine dismounted, mounted, fires, intelligence and air pictures into a combined operating picture (COP),” Delgado said. “Part of this challenge is due to the fact that dismounted and most mounted COP tools like Nett Warrior (NW) and Joint Battle Command-Platform resided on the Secret enclave. The vast majority of users at the tactical level do not possess Secret clearances, which makes sharing and receiving key information difficult.”

Capability Set '21 lets soldiers securely share controlled unclassified information across the network, allowing war fighters on the ground to receive important information regardless of their security clearance. With the new tools, the Army moved from a 100 percent classified network to a 75 percent SBU network.

“This means we now were able to use software applications at the Unclassified level in a tactical environment. SBU allowed the utilization of tactical software like the Tactical Assault Kit (TAK) to provide a [combined operating picture] down to the lowest level of leaders,” Delgado said.

Col. Garth Winterle, project manager for tactical radios at Army Program Executive Office Command, Control, Communications-Tactical, said in a May interview with C4ISRNET that the SBU architecture ”opens the door for a lot of different things,” including improved information sharing with coalition partners.

The integrated tactical network kit also unifies the disparate operating picture into a single digital operating picture. The combined operating picture “directly reduces risk in the clearance of fires, combat air support and maneuvering in widely dispersed formations,” Delgado said.

“It allowed battalion commanders to fight teams in a dispersed manner that would have been impossible with legacy systems, and therefore greatly reduced the risk to the battalion combat power that enemy indirect fires commonly present,” Delgado added.

Capability Set '21 was focused on solving immediate network capability gaps with current technology, while also making network hardware far more expeditionary and while improving network transport capabilities. The capability set includes new radios as well as smaller and lighter servers and satellite terminals. It was designed through collaboration between Army PEO C3T and the Army Network Cross-Functional Team.

The Army completed critical design review of Capability Set '21 earlier this year and started procuring new tools this month.

Right now, the “majority” of the Army's command-and-control systems sit on large vehicles that aren't useful on expeditionary operations, Delgado said. With the new technology, the integrated tactical network “separated these systems from vehicles, allowing for more network access during early expeditionary operations that we performed,” reducing the reliance on vehicles and allowing soldiers to dismount systems based on needs.

Delgado said the new integrated tactical network, or ITN, hardware is “orders of magnitude” smaller than existing tools, providing more flexibility in how units choose command-and-control equipment for operations.

“We were able to load a battalion tactical operations center worth of equipment onto a nonstandard small tactical vehicle, and then move it in a matter of hours onto a UH-60 [Black Hawk helicopter] to function as a true command aircraft,” Delgado said.

The Capability Set '21 ITN kit also includes radio waveforms that are more resilient, and it allows for data transmission. The 82nd Airborne has previously been reliant on the Single Channel Ground and Airborne Radio System as well as the Soldier Radio Waveform for tactical radio communications, but Delgado said that both had “limitations regarding their effectiveness and survivability for distributed formations,” and that they didn't allow for SBU transmissions.

The Army is investing several new radios with more resilient waveforms as part of its modernization initiative, including the two-channel leader radio.

“The ITN presents a significant increase in radio resiliency while operating in a contested environment. Most noteworthy are a resistance to tactical jamming, and a near-complete inability of the enemy to ... find radio broadcasts,” Delgado said.

https://www.c4isrnet.com/battlefield-tech/it-networks/2020/07/31/soldiers-tout-new-network-tool-as-a-game-changer/

On the same subject

  • Marines Want Missiles To Sink Ships From Shores, And They Want Them Fast

    January 18, 2019 | International, Naval, Land

    Marines Want Missiles To Sink Ships From Shores, And They Want Them Fast

    By PAUL MCLEARY WASHINGTON The Marine Corps has kicked off a rapid development program to begin firing long-range anti-ship missiles from shore-based ground vehicles in an effort to add more punch to the Navy's growing anti-ship capabilities, which are aimed squarely at Chinese and Russian advances. Dubbed the Navy-Marine Expeditionary Ship Interdiction System — that's NEMSIS to you — the program has completed its design phase. For the missile itself, Marines are looking at Lockheed Martin's new Long-Range Anti-Ship Missile (LRASM), with stealthy features to penetrate enemy missile defenses, a 1,000-pound warhead, and a range disclosed only as “over 200 miles”; Raytheon's Naval Strike Missile (NSM) already chosen as an upgrade for Navy Littoral Combat Ships, with a 264-lb warhead and a 115-mile range; and Boeing's venerable Harpoon, whose variants have a 500-lb warhead and ranges between 70 and 150 miles. The program kicked off last year with a request for information (RFI), after which companies signed OTA agreements with the service in September. Final proposals were submitted in December. Full article: https://breakingdefense.com/2019/01/marines-want-missiles-to-sink-ships-from-shores-and-they-want-them-fast/

  • Millennium to apply Victus Nox lessons to missile warning satellites

    December 13, 2023 | International, Aerospace

    Millennium to apply Victus Nox lessons to missile warning satellites

    The company in November passed a key design review for the Missile Track Custody program, which aims to develop a constellation of satellites in MEO.

  • How Lockheed Martin Is Trying To Link Everything on the Battlefield

    November 18, 2019 | International, C4ISR

    How Lockheed Martin Is Trying To Link Everything on the Battlefield

    BY PATRICK TUCKER Experiment by experiment, the company is weaving aircraft, ground vehicles, satellites, and the rest into a network that will someday give commanders unprecedented decision-support options. The Pentagon's efforts to digitally connect everything on the battlefield is has a big challenge to overcome: getting disparate vehicles and weapons to share data. “The interoperability of various, different systems, that's really where we are struggling. We don't have that machine to machine connection to begin with,” Air Force Brig. Gen. David Kumashiro recently told the audience at last week's Defense One Outlook 2020 conference. Over the past several years, Lockheed Martin officials say they've been working to build those connections, piece by piece and plane by plane. They started by asking, “How would we go fight in 2030, 2045?” and then working backwards, J.D. Hammond, vice president of C4ISR systems, told reporters at one of the company's offices. The company began by asking “How would we go fight in 2030, 2045?” They started with an idea of the state they wanted to reach and then worked backward. In 2013, the company launched a project, dubbed Missouri, to link the stealthy F-22 and F-35 combat jets. The Air Force has announced that they are to test a similar link next month, but the Air Force is establishing more complete linkages, including new forms of secure radio linkagages using software defined radio, and also including other assets such as Valkyrie drones. In 2015, they launched Project Iguana, extending the datalinks to the high-flying U-2 spy plane, fourth-generation combat aircraft such as the F-16, and satellites. In February 2018, they conducted an experiment under DARPA's SoSITE program that added other aircraft and a ground station. In April, their RIOT experiment connectngi jets to ground vehicles. Experiment by experiment, Lockheed tried to “systematically work” to build the components of a larger network of networks, said Hammond. There are four experiments projects planned for next year: Mayhem, focusing on links for satellites; Edison, datalinks for the Navy; Brennan, aircraft and Army units; and Project CASTL, satellites and a “space tactical layer”. Ultimately, Lockheed wants all this to add up to a “virtualized cloud-based architecture.” Think of it like the branches of a tree. A handful of ships and planes might form one network. That will, in turn, connect to a larger network that would, in turn, would be connected to the larger JEDI cloud. “You end up with virtual private clouds on the edge with a computing architecture you could have on an aircraft, on a ship, or any of the deployed nodes,” said John Clark, Lockheed's vice president of intelligence-surveillance-reconnaissance and unmanned aerial systems. Most of the linked aircraft and ships in these experiments carry an Enterprise Mission Computer 2.0 — dubbed “Einstein box” after its abbreviation, EMC2 — that translates each platform's data into a shared protocol that can go out to the larger wireless network. Lockheed officials hope that bringing all these pieces together will enable a new sort of operating system for warfare. They showed journalists a new experimental battle management display to illustrate the concept. The system presents the operator with a list of effects, from devastating explosions to a quiet disabling of some enemy system; a list of available assets, including planes or drones; a map of targets; and recommendations for the best way to deliver effects to targets. As circumstances change — fuel gets low, ammunition is depleted, targets are destroyed, new enemy forces arrive, etc. — the system can send out alerts that a new plan is needed — or automatically update the plan with new instructions for pilots and drone operators. It all depends on how high the operator wants to set the autonomy. That vision is very different from the way mission tasking works today. Preston Dunlap, the chief architect of the Air Force, said at the Defense One Outlook 2020 conference, “Right now, our commanders are very limited in who they can assign to do certain” things. “More often than not, you have to assign someone because they happen to be in front of a specific place in front of a specific computer,” he said. Of course, realtime data sharing across platforms isn't a simple or clear-cut affair, even after successful experimentation. The years-long problems with Lockheed's Autonomic Logistics Information System, or ALIS, for the F-35 show how hard it can be simply to share data between operators and just one platform. The challenges of sharing data between multiple platforms, in the middle of battle in a highly contested airspace, are far larger. But commanders say they must try. “In terms of where our adversaries are,” Kumashiro said, U.S. forces have “a need to have this joint all-domain command-and-control system.” https://www.defenseone.com/technology/2019/11/how-lockheed-martin-trying-link-everything-battlefield/161355

All news