Back to news

February 20, 2018 | International, Land, C4ISR

Rheinmetall-led consortium wins first European research contract

FRANKFURT, Feb 19 (Reuters) - A consortium led by Rheinmetall has won the first contract relating to European Union defence research financed by the EU’s European Defence Union, the German company said on Monday.

The consortium will conduct studies into what could become EU-wide standardized soldier systems, including electronics, voice communication, software and sensors, it said.

The other members of the consortium are Indra and GMV Aerospace and Defence of Spain, Leonardo and Larimart of Italy, the Netherlands Organization for Applied Scientific Research TNO, Poland’s iTTi, the Portuguese company Tekever ASDS and SAAB of Sweden. (Reporting by Maria Sheahan, editing by Louise Heavens)

https://www.reuters.com/article/rheinmetall-europe/rheinmetall-led-consortium-wins-first-european-research-contract-idUSFWN1Q902H

On the same subject

  • SOCOM seeking technologies for war in a post-cyberpunk era

    August 28, 2018 | International, C4ISR

    SOCOM seeking technologies for war in a post-cyberpunk era

    By: Kelsey Atherton The great trick of computers is that they enable people to be more than human. In a new request for information, the United States Special Operations Command is looking for a range of computer and computer-enabled technologies, all designed to make Special Operators function in some way more than human. These technologies range from sensors to nano-drones to biomedical performance enhancements. Taken together, the list of desired capabilities is a preview of what may be possible in the near-future to shape the intimate fights on the edges of wars. Miniature robot scouts, hyper-aware data collection and monitoring riding along low-bandwidth nodes, tailorable hyperspectral imaging sensors, biometric tracking resistance, and go-pills without adverse effects are all on asking, and that’s just a handful of the dozens of capabilities sought. The full request for information is available online. To parse through it, here are some of the standout categories. Robots, blood-transporting robots How many pounds of blood is a reasonable amount of blood for a robot to carry? Ten pounds, answers the SOCOM request. Specifically, SOCOM is looking for an unmanned aerial blood delivery system that can do vertical takeoff and landing (VTOL), or at least operate without a runway. The 10 pound requirement is a minimum, and roughly approximate to the amount of blood in a person weighing 150 pounds. In order for the blood to be useful, it has to be kept between 35-46 degrees Fahrenheit, ideally through passive means, all the way from loading through transit, delivery, and unloading. That unloading should “minimize shock to the payload for any proposed delivery concept,” because again, this is about making a robot that can deliver blood in a useful and life-saving state. Blood transport drones already exist, and have safely demonstrated blood transport in small amounts and over modest distances. SOCOM wants a blood drone that can transport its cargo over 100 miles and back, while staying in contact and control of human operators. That’s an ambitious ask, and it’s one of just five named categories of drone technology sought by SOCOM. Another is a platform-agnostic desire for an expeditionary ISR platform, which can operate as individuals, in pairs, or in meshed swarms. These drones will have modular payloads, carry at least two sensors, and require minimum logistics support. One asked-for way to sustain these drones is by “alternative power through environment,” like directly sipping power from power lines or incorporating a way to charge off renewable energy. The other three categories of drone are ambitious, though in more familiar terms. There’s a listing for a Nano VTOL drone, with a takeoff weight of 2.6 ounces that can fly autonomously inside and avoid collisions, with a human monitoring but not directly piloting the drone. Ten times the size is the Micro VTOL drone, at about 1.6 pounds, capability of all-weather an autonomous flight, and able to operate both without GPS and in caves. The biggest non-blood-carrying drone SOCOM is looking for is a hand-launched or fixed-wing VTOL vehicle that can be recovered without special equipment, will weigh no more than 7.8 pounds, and can fly for at least 90 minutes at sea level. These drones are familiar machines, mostly, even if some of the payloads are a little unusual. Sensors in a robot are common enough. SOCOM is also looking for a way to increase the sensors carried and used by a person on foot. Hyper-sensors Collecting information is nothing without processing it into a useful form, and this SOCOM RFI seeks information on both. While the specific means are not detailed, there’s a desire for “edge computing” to “derive useful information at the point of collection through sensor fusion and forwards processing without reliance on high bandwidth, long haul communications.” That likely means computers and AI already in the field and embedded in equipment carried by the special operations forces. Making that information intelligible is one task a Heads Up Display (HUD), but SOCOM is also open to audio cues and haptic feedback, among other means, for relaying processed information in a useful and immediate form. Collecting that information will be a new suite of Intelligence, Surveillance, and Reconnaissance (ISR) sensors, designed with the limitations and hard conditions of present and future special operations missions in mind. That means working without “owning the air domain,” a break from decades of assumptions for conventional and counter-insurgent warfare, but a break that acknowledges the likely presence of cheap drones on all sides of future battles. These sensors will include visual spectrum, infrared, hyper-spectral imaging, LIDAR, electronic warfare, can operate autonomously and be mounted on drones or scattered on the ground to work and transmit data remotely. For good measure, SOCOM is also asking for technologies that would allow drones to work as something like a universal translator even in denied connectivity environments. With linguistic expertise, regional dialects, demographic information and cultural sensitivities programmed in, the drones will do the fraught social massaging around war. If there is anything that will convince a local population about the right intentions of the people presently fighting nearby, it’s a robot that’s hip to the local slang. More than human All this collecting and transmitting information is likely to produce a host of signals, so SOCOM is also looking for technologies that “help avoid physical detection by acoustic, thermal, radar, visual, optical, electromagnetic, virtual, and near infrared means.” Finding a way to remain discreet in an information rich environment is a challenge for everyone in society today, one tacitly acknowledged by an ask for a technology to “help manage digital presence within the realm of social media.” (Step 1 for that is probably not using a jogging app with geolocation turned on.) Biometric technologies (think: facial recognition, etc) are often seen as a tool of the powerful, wielded by governments against vulnerable populations. While they certainly can be that, they can also pose a challenge to individuals in the employ of one military trying to evade the sensors used by another. To that end, SOCOM is looking for technologies that provide resistance to biometric tracking. (While it’s not specified, Juggalo-style face paint might work for this exact purpose). Finally, once a special operator has evaded detection, used the sensors on hand, and has an adequate amount of robot-delivered blood to keep going, there is an interest in human performance and biomedical enhancements. These include drugs and biologics that can enhance cognitive performance, increase “peak performance sustainability, including increased endurance, strength, energy, agility, and enhanced senses” and a whole other wish list of capabilities that officers from time immemorial have demanded of the people under their command. Most promising, perhaps, is the ask for “medical sensors and devices that provide vital sign awareness and send alerts,” and “austere trauma treatment,” both of which don’t require transformative properties in the people using them. Science fan-fiction It’s too early to say how many of the asks in this RFI are realistic, though some are already delivered technologies and others certainly seem near-future plausible. More importantly, the request as a gestalt whole suggests a desire for people that are more than human, and capable of performing everything asked of them in remote battlefields, far from home. As the United States approaches its 17th continuous year of war abroad, asking that science deliver what science fiction promised feels at least as plausible as imagining a future where deployments abroad are scaled back. https://www.c4isrnet.com/unmanned/2018/08/28/socom-seeking-technologies-for-war-in-a-post-cyberpunk-era

  • DIUx wants drones that are out for blood

    May 4, 2018 | International, Aerospace

    DIUx wants drones that are out for blood

    By: Kelsey Atherton For drone delivery to make sense, with existing capabilities of drones, the cargo needs to be relatively light, it needs to have tremendous value, and it needs to urgently travel the last mile by air. This is why, to the extent we’ve seen drones used for delivery in the wild, it’s more likely as a means to carry contraband into a prison than it is a practical alternative to the postal service. But there’s one other cargo that fits the description, and that’s blood itself. Defense Innovation Unit Experimental, the Pentagon’s stand-up Silicon Valley-focused acquisition house, is looking for a drone that can carry a modest cargo of blood, through the dark of night toward where it’s most needed. Call it “Dronesferatu.” From FCW: The specs of the solicitation from the Defense Innovation Unit Experimental -- the ability to deliver a 5-pound package over 100 kilometers in “austere environments” -- strongly suggest that they’re looking at an unmanned aerial vehicle system that supports refrigeration or other means of temperature control.  “These deliveries, ideally automated, will provide essential items to critically wounded military personnel as quickly as possible after an injury occurs,” the April 23 solicitation states. “Ability to sustain a very high frequency of operations over an extended period of time is critical. Speed of delivery, reliability and robustness to failure and interference, response time, and overall delivery throughput are critical.” Getting the right blood to the right people as fast as possible means saving lives. To that end, DARPA’s funded research into metabolic rate reduction to see if there’s a way to make people bleed out more slowly, or into using female hormones to similarly prolong the survivable time without transfusion. In 2013, the U.S. Army conducted a study on pre-hospital transfusion for battlefield casualties being medically evacuated in Afghanistan, and in 2012 Canadian Blood Services even tested the viability of paratroopers transporting blood for transfusion. Consider blood drones complementary to this field of work. Early tests by researchers at Johns Hopkins and Uganda’s Makerere University proved that small vials of blood transported by drone were just as viable as blood transported by car. Those same researchers followed up with a test of blood delivery from ship-to-shore, for possible use in response to coastal areas hit by natural disasters, where the roads are impassable but drones could still safely fly. The American startup Zipline demonstrated its own blood delivery drones in 2016, and has for a year and a half worked on delivering blood by robot to parts of Rwanda. DIUx’s ask, that a drone fly over 60 miles and carry 5 pounds of blood, is not far off from what Zipline’s drones can already do, with the company stating a range of 100 miles and a cargo capacity of just under four pounds. Weight and range tradeoffs are at the heart of aviation design, so it’s likely that vendors have already pitched something within the bounds of the solicitation. Should that drone make a fast turnaround from ask to prototype to useful tool, the troops fighting abroad may gain a better shot at surviving otherwise-fatal blood loss. Unlikely that the reverse-vampire drones will look like bats, though. https://www.c4isrnet.com/unmanned/2018/05/03/diux-wants-drones-that-are-drones-out-for-blood/

  • NAVAIR Orders Five VH-92 Presidential Helicopters from Sikorsky

    February 9, 2021 | International, Aerospace

    NAVAIR Orders Five VH-92 Presidential Helicopters from Sikorsky

    Posted on February 8, 2021 by Richard R. Burgess, Senior Editor ARLINGTON, Va. — Naval Air Systems Command has awarded Sikorsky a third production contract to build five VH-92A helicopters for the U.S. Marine Corps.   The Naval Air Systems Command awarded Sikorsky Aircraft Corp. — a Lockheed Martin company — a $478.6 million firm-fixe-price contract modification to build five Low-Rate Initial Production Lot III VH-92As, according to a Feb. 5 Defense Department announcement. The award also includes orders for “interim contractor support, two cabin interior reconfiguration kits, support equipment, initial spares and system parts replenishment,” the release said. Work on the contract is expected to be completed by December 2023.  The VH-92A was selected in 2014 to provide transport for the president of the United States, the vice president and other high-level government officials. The helicopter will replace the 19 VH-3D Sea King and VH-60N “White Hawk” helicopters operated by Marine Helicopter Squadron One. The Corps plans to acquire a total of 23 VH-92As, 21 for operations and two for testing. The May 2014 engineering and manufacturing development contract procured two test aircraft and four production aircraft. Six VH-92As were ordered in June 2019, followed by six more in February 2020.  The presidential helicopter fleet is operated by Marine Helicopter Squadron One, based at Marine Corps Air Station Quantico, Virginia, with a detachment at Joint Base Anacostia-Bolling in Washington.   “Government testing to validate system performance and prepare for Initial Operational Test and Evaluation is progressing on schedule and will support an Initial Operational Capability (IOC) planned for July 2021,” a Navy spokeswoman said.  “The VH-92A will enter service post IOC at the determination of the White House Military Office.”  https://seapowermagazine.org/navair-orders-five-vh-92-presidential-helicopters-from-sikorsky/

All news