Back to news

February 14, 2023 | Local, Aerospace

Personnel shortage challenging Air Force’s plan to introduce F-35, other equipment - Trail Daily Times

‘The Air Force of 2035 is going to look completely different than the Air Force in 2023’

https://www.trailtimes.ca/news/personnel-shortage-challenging-air-forces-plan-to-introduce-f-35-other-equipment/

On the same subject

  • Demands of defence policy almost double military's recruitment gap, top soldier warns | CBC News

    April 21, 2024 | Local, Land

    Demands of defence policy almost double military's recruitment gap, top soldier warns | CBC News

    The recruiting hole in which the Canadian military finds itself is deeper and potentially more serious than it might appear at first glance — in part because of all the new equipment the federal government has ordered, or plans to order in the near future.

  • RCAF working toward new sniper pod placement on CF-188 Hornet

    May 14, 2018 | Local, Aerospace

    RCAF working toward new sniper pod placement on CF-188 Hornet

    Chris Thatcher In a two-by-three metre wind tunnel at the National Research Council of Canada's (NRC) aerospace research centre in Ottawa, aerospace engineers are gathering data for the Royal Canadian Air Force (RCAF) this week to validate the placement of the sniper pod on the centreline station of the CF-188 Hornet. “For this configuration, we are running at close to takeoff and landing speeds to simulate the take off and landing of the F-18, about 100 metres per second or almost 200 knots,” explained Melissa Richardson, an aerodynamics research officer and the project manager for the testing process, as wind whipped over the inverted nose landing gear and sniper pod. The CF-188 fighter jet has carried a certified sniper pod on the left side of the fuselage, below the engine intake, since the aircraft were upgraded in the early 2000. But lessons from recent operations over Libya in 2011 and Iraq and Syria between October 2014 and March 2016 convinced pilots they would have a better view of possible targets with the centerline placement. “We found a lot of our missions revolved around looking at the ground, monitoring areas of interest and targets for missions that are four to five hours long,” said Capt Tom Lawrence, a CF-188 pilot and the project officer for fighter weapons and equipment. “When [pilots] are manoeuvring their aircraft, there is a chance of the aircraft actually masking the targeting pod. Putting [it] on the centre of the aircraft allows a larger field of regard.” Rather than bank left to maintain focus on a target, the new placement should ensure an uninterrupted view of the ground or target aircraft, “taking that frustration out of the pilot's mind,” he said. “They can just focus on the imagery and the task at hand.” Lawrence said it could also make it easier for pilots to employ weapons and assess battle damage effects. The purpose of the wind tunnel tests is to measure the aerodynamics created by the nose landing gear on the sniper pod mounted behind it at times when it is most exposed to turbulence, said Richardson. Among concerns before the tests began were the effect of significant vibration on the pod and the possibility of debris being kicked up by the wheels and striking its protective glass shield. “[We need to] make sure the aircraft is safe to operate with the sniper pod on this new location. That means it can take off and land without excessive vibration, that the loads are still within acceptable limits,” explained Capt David Demel, the certification authority with the RCAF's Technical Airworthiness Authority. “This is the goal of the current wind tunnel test, to confirm that before we move to the flight test phase in Cold Lake in the September timeframe.” A second a high-speed equivalent test will be conducted by the NRC at its high speed trisonic wind tunnel in about three weeks, using a six per cent scale model, that will include ensuring engine intake airflow is not affected. Test pilots with the Operational Test and Evaluation Unit in Cold Lake will then recertify operational airworthiness of the sniper pod in its new placement. While the testing facilities are being provided by the NRC, the vibration data is being gathered and analyzed by Bombardier, which has provided some of the instrumentation. The sniper pod and landing gear were installed in the wind tunnel by L-3 MAS, which will have the task of mounting the pods in the new location on the entire CF-188 fleet–including the 18 F/A-18 Hornets the government is negotiating to buy from the Royal Australian Air Force–once approved. “We're all collaborating on the project as it goes through each phase, from technical airworthiness to operational airworthiness,” said Lawrence. https://www.skiesmag.com/news/rcaf-planning-new-sniper-pod-placement-cf-188-hornet/

  • Hacker Community to Take on DARPA Hardware Defenses at DEF CON 2019

    August 5, 2019 | Local, Security

    Hacker Community to Take on DARPA Hardware Defenses at DEF CON 2019

    This month, DARPA will bring a demonstration version of a secure voting ballot box equipped with hardware defenses in development on the System Security Integrated Through Hardware and Firmware (SSITH) program to the DEF CON 2019 Voting Machine Hacking Village (Voting Village). The SSITH program is developing methodologies and design tools that enable the use of hardware advances to protect systems against software exploitation of hardware vulnerabilities. To evaluate progress on the program, DARPA is incorporating the secure processors researchers are developing into a secure voting ballot box and turning the system loose for public assessment by thousands of hackers and DEF CON community members. Many of today's hardware defenses cover very specific instances or vulnerabilities, leaving much open to attack or compromise. Instead of tackling individual instances, SSITH researchers are building defenses that address classes of vulnerabilities. In particular, SSITH is tackling seven vulnerabilities classes identified by the NIST Common Weakness Enumeration Specification (CWE), which span exploitation of permissions and privilege in the system architectures, memory errors, information leakage, and code injection. “There are a whole set of cyber vulnerabilities that happen in electronic systems that are at their core due to hardware vulnerabilities – or vulnerabilities that hardware could block,” said Dr. Linton Salmon, the program manager leading SSITH. “Current efforts to provide electronic security largely rely on robust software development and integration, utilizing an endless cycle of developing and deploying patches to the software firewall without addressing the underlying hardware vulnerability. The basic concept around SSITH is to make hardware a more significant participant in cybersecurity, rather than relegating system security only to software.” Under the SSITH program, researchers are exploring a number of different design approaches that go well beyond patching. These include using metadata tagging to detect unauthorized system access; employing formal methods to reason about integrated circuit systems and guarantee the accuracy of security characteristics; and combining hardware performance counters (HPCs) with machine learning to detect attacks and establish protective fences within the hardware. One team from the University of Michigan is developing a novel security approach that changes the unspecified semantics of a system every 50 milliseconds. Currently, attackers continuously probe a system to locate these undefined sections and, over time, are able to create a system map to identify possible hacks. By changing the construct every 50 milliseconds, attackers do not have enough time to find those weaknesses or develop an accurate representation of the system as a whole. To evaluate the hardware security concepts in development on the SSITH program, DARPA – working with Galois – is pursuing a voting system evaluation effort to provide a demonstration system that facilitates open challenges. The program elected to use a voting system as its demonstration platform to provide researchers with an accessible application that can be evaluated in an open forum. Further, the topic of election system security has become an increasingly critical area of concern for the hacker and security community, as well as the United States more broadly. “DARPA focuses on creating technologies to enhance national defense, and election system security falls within that remit. Eroding trust in the election process is a threat to the very fabric of our democracy,” noted Salmon. While protecting democracy is a critical national defense issue, SSITH is not trying to solve all issues with election system security nor is it working to provide a specific solution to use during elections. “We expect the voting booth demonstrator to provide tools, concepts, and ideas that the election enterprise can use to increase security, however, our true aim is to improve security for all electronic systems. This includes election equipment, but also defense systems, commercial devices, and beyond,” said Salmon. During DEF CON 2019, the SSITH voting system demonstrator will consist of a set of RISC-V processors that the research teams will modify to include their SSITH security features. These processors will be mounted on field programmable gate arrays (FPGAs) and incorporated into a secure ballot box. Hackers will have access to the system via an Ethernet port as well as a USB port, through which they can load software or other attacks to challenge the SSITH hardware. Since SSITH's research is still in the early stages, only two prototype versions of the 15 processors in development will be available for evaluation. “At this year's Voting Village, hackers may find issues with the processors and quite frankly we would consider that a success. We want to be transparent about the technologies we are creating and find any problems in these venues before the technology is placed in another venue where a compromise could be more dangerous,” said Salmon. Following DEF CON 2019, the voting system evaluation effort will go on a university roadshow where additional cybersecurity experts will have an opportunity to further analyze and hack the technology. In 2020, DARPA plans to return to DEF CON with an entire voting system, which will incorporate fixes to the issues discovered during the previous year's evaluation efforts. The 2020 demonstrator will use the STAR-Vote system architecture, which is a documented, open source architecture that includes a system of microprocessors for the voting booth, ballot box, and other components. It also includes a verifiable paper ballot, providing both digital and physical representations of the votes cast within the booth. “While the 2020 demonstrator will provide a better representation of the full attack surface, the exercise will not result in a deployable voting system. To aid in the advancement of secure election equipment as well as electronic systems more broadly, the hardware design approaches and techniques developed during the SSITH program will be made available to the community as open-source items,” concluded Salmon. https://www.darpa.mil/news-events/2019-08-01

All news