Back to news

May 2, 2022 | International, Aerospace

Brazil Acquires Two A330s For MRTT Conversions

On the same subject

  • DARPA: Building Trusted Human-Machine Partnerships

    February 4, 2019 | International, C4ISR

    DARPA: Building Trusted Human-Machine Partnerships

    A key ingredient in effective teams – whether athletic, business, or military – is trust, which is based in part on mutual understanding of team members' competence to fulfill assigned roles. When it comes to forming effective teams of humans and autonomous systems, humans need timely and accurate insights about their machine partners' skills, experience, and reliability to trust them in dynamic environments. At present, autonomous systems cannot provide real-time feedback when changing conditions such as weather or lighting cause their competency to fluctuate. The machines' lack of awareness of their own competence and their inability to communicate it to their human partners reduces trust and undermines team effectiveness. To help transform machines from simple tools to trusted partners, DARPA today announced the Competency-Aware Machine Learning (CAML) program. CAML aims to develop machine learning systems that continuously assess their own performance in time-critical, dynamic situations and communicate that information to human team-members in an easily understood format. “If the machine can say, ‘I do well in these conditions, but I don't have a lot of experience in those conditions,' that will allow a better human-machine teaming,” said Jiangying Zhou, a program manager in DARPA's Defense Sciences Office. “The partner then can make a more informed choice.” That dynamic would support a force-multiplying effect, since the human would know the capabilities of his or her machine partners at all times and could employ them efficiently and effectively. In contrast, Zhou noted the challenge with state-of-the-art autonomous systems, which cannot assess or communicate their competence in rapidly changing situations. “Under what conditions do you let the machine do its job? Under what conditions should you put supervision on it? Which assets, or combination of assets, are best for your task? These are the kinds of questions CAML systems would be able to answer,” she said. Using a simplified example involving autonomous car technology, Zhou described how valuable CAML technology could be to a rider trying to decide which of two self-driving vehicles would be better suited for driving at night in the rain. The first vehicle might communicate that at night in the rain it knows if it is seeing a person or an inanimate object with 90 percent accuracy, and that it has completed the task more than 1,000 times. The second vehicle might communicate that it can distinguish between a person and an inanimate object at night in the rain with 99 percent accuracy, but has performed the task less than 100 times. Equipped with this information, the rider could make an informed decision about which vehicle to use. DARPA has scheduled a pre-recorded webcast CAML Proposers Day for potential proposers on February 20, 2019. Details are available at: https://go.usa.gov/xE9aQ. The CAML program seeks expertise in machine learning, artificial intelligence, pattern recognition, knowledge representation and reasoning, autonomous system modeling, human-machine interface, and cognitive computing. To maximize the pool of innovative proposal concepts, DARPA strongly encourages participation by non-traditional proposers, including small businesses, academic and research institutions, and first-time Government contractors. DARPA anticipates posting a CAML Broad Agency Announcement solicitation to the Federal Business Opportunities website in mid-February 2019. https://www.darpa.mil/news-events/2019-01-31

  • La Suisse organise les essais d'évaluation pour son futur chasseur

    March 5, 2019 | International, Aerospace

    La Suisse organise les essais d'évaluation pour son futur chasseur

    Helen Chachaty Le processus de remplacement des F-5 Tiger et des F/A-18 Hornet de l'aviation de chasse helvète bat son plein. Suite au lancement de l'appel d'offres en juillet 2018, l'agence d'acquisition d'armement armasuisse a réceptionné le 25 janvier dernier les offres de cinq industriels : Airbus, Boeing, Dassault Aviation, Lockheed Martin et Saab. Le contrat est estimé à 6,5 milliards d'euros et prévoit la livraison de 30 à 40 appareils entre 2025 et 2030. Prochaine étape : l'évaluation des aéronefs proposés, sur simulateur, au sol et en vol. Si l'évaluation sur simulateur se tiendra « chez les candidats », les essais au sol et en vol seront effectués directement en Suisse, sur la base aérienne de Payerne, au sud-ouest de Berne, entre le mois d'avril et le mois de juin prochain. Ils comprendront un total de huit missions « avec un ou deux avions », « sur quatre journées de vol », ainsi qu'un vol de nuit. «Ces essais permettront de vérifier les capacités de avions et les données fournies dans les offres soumises », précise le Département fédéral de la défense, de la protection de la population et des sports(DDPS). Le calendrier des évaluations a également été publié par le DDPS. C'est l'Eurofighter d'Airbus qui ouvrira le bal en avril, suivi du F/A-18 Super Hornet de Boeing fin avril-début mai. Dassault Aviation présentera le Rafale entre la mi-mai et la fin du mois. Le F-35A de Lockheed Martin volera les deux premières semaines de juin, suivi immédiatement après du Gripen E de Saab. Une synthèse des données collectées sera ensuite réalisée, un second appel d'offres est prévu en 2020, le choix final devrait être fait en 2022. https://www.journal-aviation.com/actualites/41963-la-suisse-organise-les-essais-d-evaluation-pour-son-futur-chasseur

  • Top USAF general urges support for Next-Gen fighter - Skies Mag

    March 11, 2021 | International, Aerospace

    Top USAF general urges support for Next-Gen fighter - Skies Mag

    Air Combat Command chief talks NGAD, Tacair study, and acknowledges current F-35 problems.

All news