Back to news

December 19, 2018 | International, C4ISR

Marines look for IBM Watson-like artificial intelligence to plan large-scale wargames

By:

The Marines are looking to big data analysis and potentially an IBM Watson-like machine or software to help conduct complex wargaming and plan for future battles in an immersive environment.

The Corps' Program Manager for Wargaming Capability, Col. Ross Monta, told Marine Corps Times that a recent program announcement seeks to “bring advanced analytics, visualization, models and simulation together to create an environment that enables senior leaders” to make a host of decisions.

Those range from capabilities for the future force and ways to test operational plans, develop concepts of operations and help provide information to prioritize resources.

The announcement is the service's second round of information gathering in four technology areas that include modeling and simulation, wargame design, data services and visualization. The Marines are reviewing white papers submitted from industry in January, February, March and July. They're aiming to have testing begin as early as October.

At the 2017 Modern Day Marine Military Expo, then-Lt. Col. Monta spoke on how the Corps was developing a three- to five-year plan for a wargaming center at Marine Corps Base Quantico that would allow planners to conduct 20 wargames a year, including two large-scale, 250-participant exercises.

The simulation they sought at the time would provide, “accurate representation of future operating environments, simulate friendly and enemy capabilities” and perform “rapid, in-depth analysis of game-derived data or insights.”

The then-head of Marine Corps Systems Command, Brig. Gen. Joseph Shrader, said that wargaming had to get beyond “moving yellow stickies on a map.”

At that time the center was capable of conducting about 11 wargame scenarios a year, Monta said.

They were looking at partnering advanced simulation capabilities, such as the one they're seeking in the fbo.gov posting, with flesh and blood experts from the Ellis Group think tank to better see high-order, long-term warfighting needs.

The head of training systems command, Col. Walt Yates, told Marine Corps Times that the aim was to have ways of using artificial intelligence to run simulations as many as 1,000 times.

With those numbers, planners can learn probabilities of victory, casualty expectations and the logistics required to accomplish the mission.

Simulation capabilities would allow commanders to run scenarios against future threats to gauge what equipment and tactics are most needed to succeed.

These factors would inform planning for everything from buying the next piece of combat gear to how best to deploy forces, Yates said.

The big data analysis is just one of a list of items the Corps has been working in recent years to push their wargaming from squad to Marine Expeditionary Force-level, leveraging advances in computing, data analytics, virtual reality, augmented reality and gaming.

Beginning this past year, Marines at each of the Corps 24 infantry battalions began fielding Tactical Decision Kits, a combination of laptop, VR goggles and drones that allow small unit leaders to map battle spaces and then run operations plans in VR to rehearse missions.

Earlier this year, MARCORSYSCOM officials sought industry input on pushing weapons simulations for live training, force-on-force shooting past the decades old laser technology still in use today.

They want shooting systems that more realistically replicate how bullets and other projectiles move and the types of damage they cause.

The system that would be able to simulate all weapons and vehicles typically seen in a battalion, which would include at least: M4/M16; M9 or sidearm, the M27 Infantry Automatic Weapon; hand grenades; rocket propelled grenades; Light Anti-Tank Weapon; 60mm mortars; 81mm mortars; Claymore antipersonnel mine; Mk-19 grenade launcher; Russian machine gun; AK-47 variants; M41 TOW; Javelin missile and the Carl Gustaf recoilless rifle.

It would also allow for immediate after-action review so that trainers and commanders could see where their Marines were aiming, when and how much they fired to strike a target and what damage their opponents caused.

https://www.marinecorpstimes.com/news/your-marine-corps/2018/12/18/marines-look-for-ibm-watson-like-artificial-intelligence-to-plan-large-scale-wargames

On the same subject

  • Rowan University Project Will Develop Composite Materials Used to Protect Soldiers

    August 27, 2019 | International, Land

    Rowan University Project Will Develop Composite Materials Used to Protect Soldiers

    By Kimberly Hoodin Rowan University will lead a $14.5 million Department of Defense/Army Research Lab project to create new composite materials – and ways to process those materials – that will help modernize the Army and improve the safety of soldiers in the field. The project, titled “Advancing Structural Materials for Army Modernization Priorities via Direct-Write Approaches,” will be led by researchers from Rowan University teamed with PPG, Drexel University, Northeastern University and the University of Massachusetts Amherst to create new advanced composite and plastic materials and ways to process them. The project is driven by a cooperative agreement with the U.S. Army Combat Capabilities Development Command Army Research Laboratory. The team will work on developing innovative materials by using “cold-spray” advanced manufacturing technologies. The work will focus on polymers, starting with polystyrene, then move on to more advanced composite materials and systems, as designated by the Army. “The high particle velocity of cold spray enables rapid cure and adhesion of polymers. This should result in the fast and efficient production of high-performance composite parts or repair of parts,” said John La Scala, associate chief the ARL's Materials and Manufacturing Sciences Division and cooperative agreement manager for the research program. “Additionally, this novel manufacturing methodology is a layer-by-layer production of composites, which should reduce void and flaw content. This should improve strength and durability significantly, thereby opening the potential of using this manufacturing technique to prepare composites for extreme conditions, while replacing the current expensive manufacturing methods with a much more economical methodology.” Researchers hope to develop materials to be used for making military equipment stronger and lighter, soldiers more agile and vehicles more durable. Longer-term, the team sees the potential for use of the materials in the fields of civil aviation, automotive, health care and space exploration. “We will work to make materials more quickly, to make them better and easier to repair offsite and, importantly, onsite in the field,” Dr. Joe Stanzione, associate professor of chemical engineering at Rowan University said. “That includes everything from parts for tanks and jeeps, to usable tools, and helmets.” http://compositesmanufacturingmagazine.com/2019/08/rowan-university-project-will-develop-composite-materials-used-to-protect-soldiers/

  • The Navy is moving forward on its next-gen jamming pod

    October 29, 2018 | International, C4ISR

    The Navy is moving forward on its next-gen jamming pod

    By: Mark Pomerleau The Navy has selected a company to demonstrate existing technologies for the second increment of the service's multiphase approach to replacing an aging jamming pod. Northrop Grumman has been awarded a $35.1 million, 20-month contract for the Next Generation Jammer (NGJ) Low Band, part of the jamming pods that will be outfitted onto EA-18 Growler aircraft to replace the legacy ALQ-99 jammer. The Navy is splitting the upgrade into three pods to cover respective parts of the electromagnetic spectrum. The order of development for the pods is “Mid-Band (Increment (Inc) 1), Low-Band (Inc 2), and the future High-Band (Inc 3),” which “was determined based on criticality of current and emergent threats,” a Navy spokesmen previously told C4ISRNET in response to written questions. “The NGJ full system capability is comprised of these three standalone programs ... each of which covers a different frequency band and addresses a variety of adversary systems.” Northrop's contract award is part of a demonstrator that will help inform the Navy of how to continue to mature the program for the low-band jammer. “Northrop Grumman will deliver a mature, low-risk and exceedingly capable solution for Next Generation Jammer Low Band that outpaces evolving threats and enables the Navy's speed-to-fleet path,” said Thomas Jones, vice president and general manager, airborne C4ISR systems, Northrop Grumman. “Our NGJ-LB pod provides multimission capability for electromagnetic maneuver warfare. We stand ready to demonstrate advancements in this mission area and deliver ahead of schedule.” The low-band capability will “deliver significantly improved radar and communications jamming capabilities with Open Systems Architecture that supports software and hardware updates to rapidly counter improving threats” contributing “across the spectrum of missions defined in the Defense Strategic Guidance to include strike warfare, projecting power despite anti-access/area denial challenges, and counterinsurgency/irregular warfare,” Navy budget documents have stated. Raytheon is currently on contract for the mid-band portion, which has been dubbed AN/ALQ-249(V)1 by the Navy. https://www.c4isrnet.com/electronic-warfare/2018/10/26/the-navy-is-moving-forward-on-its-next-gen-jamming-pod

  • Airpower Demands Drive Air-Launched Cruise Missile Evolution

    February 11, 2021 | International, Aerospace

    Airpower Demands Drive Air-Launched Cruise Missile Evolution

    Tony Osborne Thirty years ago, news cameras shot shaky imagery of long tubular missiles flying across the Baghdad skyline. They were a mix of Raytheon Tomahawks launched from U.S. Navy warships in the Arabian Sea and Boeing AGM-86 Air Launched Cruise Missiles, released from Boeing B-52s in the final moments of their flights, closing in on targets in the city center with a precision never seen in previous conflicts. The missile firings were the opening shots of one of the most successful air campaigns in history. Within 39 days the air assault had rendered Iraq's armed forces ineffective, ruined the country's economy and helped prevent the conflict from drawing in neighboring states. Advanced seekers drive greater autonomy in engagement endgame More than 20 countries have air-launched cruise missiles Weapons use low-observability tech to increase survivability Operation Desert Storm almost certainly secured the role of the cruise missile for future air campaigns, with the weapons providing the opening salvos for attacks in Afghanistan, Kosovo, Libya and more recently Syria. Today, nearly 20 countries have an air-launched cruise missile capability and others are aspiring toward it as the technology proliferates. Nations such as Brazil, India and Pakistan are developing their own. Increasingly, the missiles no longer are seen as just an offensive capability in the hands of the superpowers, but also as a defensive one—a long arm that can hold adversaries at bay. Neutral Finland has equipped its Boeing F/A-18 Hornets with the Lockheed Martin Joint Air-to-Surface Standoff Missile (JASSM), Sweden is considering the integration of a long-range missile for its Saab Gripens later in the 2020s, and Taiwan has developed an air-launched cruise missile for use from its AIDC F-CK-1 Ching-Kuo indigenous combat aircraft. “The significantly increased effective range of air-defense and anti-ship missiles since the end of the Cold War has allowed these nominally defensive systems to be used for offensive political purposes in various parts of the world, by threatening air and maritime assets far outside the territory on which they are based,” says Justin Bronk, a fellow for airpower and technology at the London-based Royal United Services Institute. “Cruise missiles are a necessity for any nation or coalition which needs the capability to threaten or destroy targets protected by modern ground-based air-defense networks.” At the same time, the definition of a cruise missile is being blurred. Loitering munitions and attritable UAVs—including those being developed as additive capabilities for future combat aircraft—use similar technologies, as do air-launched decoys such as Raytheon's Miniature Air-Launched Decoy and proposed systems from MBDA and Saab. The term “cruise missile” also has been hijacked and associated with shorter-range standoff weapons and even anti-ship missiles, although some have a limited land-attack capability. Even the UK's new MBDA Spear 3 weapon recently was described by the company as a mini cruise missile. The cruise missile's precursors date back more than a century. Curtiss-Sperry's Aerial Torpedo took a converted biplane, fitted it with remote controls and filled it with explosive, although it was never used in anger. Then just 25 years later, during World War II, Hitler's Germany launched thousands of V-1 pulsejet-powered flying bombs against the Allies, including more than 1,000 launched from modified Heinkel He.111 bombers. Fast-forward to today: Modern cruise missiles are capable of flying thousands of kilometers across land and sea, their positions guaranteed by satellites. Then, in the final moments of an attack, onboard sensors seek out the objectives before the missiles' penetrating warheads defeat even hardened targets. Development of a cruise missile will be bound up in the requirements stipulated by the sponsoring nation, but among the most prominent will center on the weapon's launch platform. This will generate its own constraints including the physical size and weight of the weapon, particularly if it needs to be fitted inside an aircraft's internal bay-—like that of the Lockheed Martin F-35 Joint Strike Fighter. Platform legacy is another factor, as the weapon might end up being in service longer than the carrier aircraft. For example, carriage of the UK's MBDA Storm Shadow had to be transferred from the Panavia Tornado to the Eurofighter Typhoon when the Tornado exited service in 2019. That means consideration also is needed for future platforms. This is a particular issue in cases where missile companies have not had input into aircraft development programs and is being addressed in Europe through initiatives such as the UK-led Tempest and German/French/Spanish Future Combat Air System. As with all weapons, range has a major influence on design, not only for the amount of fuel carried onboard, but also how close to the target the carrying platform needs to be before launch. A longer-range weapon permits planners to undertake more circuitous routes, reducing exposure to detection. It also can allow for attacks to be conducted from several different directions to overwhelm air defenses, or alternatively, several targets can be struck simultaneously in different parts of a country by multiple weapons to achieve a particular effect. In addition to fuel, designers also must consider the type of warhead as commanders would like to ensure the weapon can deal with any target it strikes once it gets there. Both the Storm Shadow/Scalp Taurus KEPD 350 and Lockheed JASSM, arguably the most commonly exported air-launched cruise missiles, are kitted with penetrating warheads to deal with hardened targets such as command-and-control bunkers and hardened aircraft shelters. Other factors in cruise missile design include responsiveness. Missile experts suggest planners need to be able to take advantage of windows of opportunity, such as the movement of air defenses to different sites, opening a gap through which the missile can fly. The missile itself also must be survivable; many of the new-generation, modern air-defense systems have been developed to track and shoot down cruise missiles. One of the primary roles of Russia's Mikoyan MiG-31 Foxhound is to intercept and down air-launched cruise missiles and, if possible, their carrying aircraft. “Survivability [of the cruise missile] is not a military capability requirement,” an industry expert on air-launched cruise missiles tells Aviation Week. “But clearly without it, you can't go somewhere, meet the range or achieve the effect that the military planners want.” The push for survivability has driven manufacturers to incorporate more low-observability design aspects and materials to reduce the radar cross-section of the weapon, as can be seen with the Storm Shadow/Scalp and JASSM. The basic cruise missile configuration is dominated by the warhead, fuel and engine. Each has its own trade-offs, so missile engineers are faced with balancing the requirements of range over warhead size—particularly as cruise missiles' strategic targets are often large, sometimes even hardened fixed structures. More efficient, small turbofan engines, rather than turbojets, have helped to boost range while the remaining missile fuel can enhance the explosive power when combined with the warhead. Perhaps one of the biggest challenges of cruise missile use is the mission planning process. Most cruise missiles will have undergone an extensive planning process prior to launch, with the path of flight often defined by a set of waypoints in the sky—and with more advanced weapons, the construction of 3D digital models of the target so onboard seekers can recognize it. The process can be quite granular, down to the height at which the weapon will cruise during most of its flight, attack angles and when to switch on seekers. Imperfect geographic data means some latitude has to be built in to ensure the weapon comfortably avoids crashing into high ground when using onboard terrain databases. Nearly all cruise missiles will have a basic capability to fly to a GPS coordinate. More advanced weapons can operate in GPS-denied environments, recognizing their targets using imaging onboard seekers so the weapon can pick out the target structure in cluttered terrain. “The seeker on the front of the missile provides more flexibility,” a missile industry expert states. “In some cases a target can be difficult to differentiate, so we may need to use a target basket to locate a target in a certain area of engagement.” Such seekers include electro-optical and infrared types, but future developments could include the use of laser-based Lidar and even radio-frequency seekers that could allow the weapon to pick out and identify its target earlier. During the Cold War, such accuracy was less important. The missiles could hit within tens of meters of the desired hit points and, when equipped with nuclear warheads, their kilotons of destructive power could comfortably knock out most targets. “High accuracy today means that commanders have confidence you can do the damage you need to with conventional warheads,” says Douglas Barrie, senior fellow for military aerospace at the London-based International Institute for Strategic Studies. But the slow process of mission planning means cruise missiles are less effective against potentially fleeting targets of opportunity, a concern that is prompting development of speedier planning and faster missiles. “High speed is a way forward for cruise missiles,” says the missile expert. “It lends itself to responsiveness, it is a simpler activity to plan and it increases the element of surprise.” But high speed comes with its own challenges. Such a weapon can be difficult to design and will need to be finely tuned, with little room to make changes, say experts. Most supersonic cruise missiles are either anti-ship types with a limited land-attack capability such as the Indian/Russian BrahMos, or more specialized weapons such as France's nuclear-roled ASMP-A—which Paris plans to replace with an even faster, possibly scramjet-powered weapon called the ASN4G, in the 2030s. Experts believe there is a role for both high-speed and subsonic weapons. The subsonic missile, on the other hand, is more of a “bomb truck,” says the missile industry expert. With their big boxy airframes, such weapons “are quite resilient to changing things inside, so it supports a flexible future. “For high speed, we [industry] are still grappling with developing technologies for propulsion and . . . for controlling the airframe. . . . There's still a lot of technology growth to take place.” Governments increasingly desire such capabilities, particularly in the new era of great-power competition. But while sales are lucrative, cruise missiles are not easy to export. Transfers continue to be governed by the Missile Technology Control Regime (MTCR) whose 35 signatories aim to prevent the proliferation of technology that could lead to long-range nuclear-weapon delivery systems. Many of the countries' weapons with ranges of over 300 km (190 mi.) are considered in Category 1 and face the greatest restraint in terms of transfers, while controls on weapons with a range of less than 300 km are less strict, with decisions often based on national discretion. However, the MTCR rules seem likely to evolve, particularly as the U.S. looks to export more unmanned air systems, which were previously covered by the regime. But even if the weapons are not being exported, more nations than ever are achieving the technical prowess to develop indigenous cruise missiles, and not all are MTCR signatories. So as the threat to airpower from ground-based defenses grows, the desire for such weapons is turning to necessity, as it seems likely such weapons will play an even bigger role in future conflicts beyond the opening salvos. https://aviationweek.com/defense-space/missile-defense-weapons/airpower-demands-drive-air-launched-cruise-missile-evolution

All news