Back to news

February 18, 2021 | International, Aerospace

L3Harris leaped from tracking weather to tracking missiles, cracking a competitive field

An accidental discovery in 2017 set L3Harris on a multiyear journey to build hypersonic missile tracking satellites for the military.

https://www.c4isrnet.com/battlefield-tech/space/2021/02/17/l3harris-leaped-from-tracking-weather-to-tracking-missiles-cracking-a-competitive-field/

On the same subject

  • Neutral Swiss to beef up military spending in wake of Ukraine war
  • Air Force looks for help on new, hard-to-jam, satellite waveform

    October 18, 2018 | International, Aerospace, C4ISR

    Air Force looks for help on new, hard-to-jam, satellite waveform

    By: Adam Stone In the face of a rising near-peer threat to electronic communications, the Air Force is pressing forward with efforts to develop a new, more resilient, harder-to-jam waveform that soldiers could use on the battlefield. The service expects to receive responses from industry soon on a recent request for information around protected satellite communications. The request sought industry guidance on how best to implement a new, more resilient protected tactical waveform (PTW), which enables anti-jamming capabilities within protected tactical SATCOM. “The Air Force is looking to protect our warfighter's satellite communications against adversarial electronic jamming,” the Air Force's Space and Missile Systems Center (SMC) said in a written statement to C4ISRNet. The threat comes from “adversarial electronic jammers that are intended to disrupt and interfere with U.S. satellite communications,” leaders at SMC said. Protected tactical SATCOM is envisioned to provide worldwide, anti-jam communications to tactical warfighters in benign and contested environments. The quest to solidify satellite communication links has taken on increasing urgency in recent years. As satellite communications has emerged as an integral component in the military's command and control infrastructure, potential adversaries have stepped up their ability to disrupt such links. “Tactical satellite communications are vital to worldwide military operations,” the agency noted. “Our adversaries know this and desire to disrupt U.S. satellite communications. The Air Force is fielding Protected Tactical SATCOM capabilities to ... ensure warfighters around the globe have access to secure and reliable communications.” Industry is expected to play a key role in the development and deployment of any new waveform. Officials at SMC said that early prototyping efforts will be conducted through the Space Enterprise Consortium (SpEC), which is managed by Advanced Technology International. SpEC acts as a vehicle to facilitate federally-funded space-related prototype projects with an eye toward increasing flexibility, decreasing cost and shortening the development lifecycle. The organization claims 16 prototype awards to date, with some $26 million in funding awarded. Understanding the protected tactical waveform Government documents describe PTW as the centerpiece of the broader protected tactical SATCOM effort, noting that it provides “cost-effective, protected communications over both military and commercial satellites in multiple frequency bands as well as broader protection, more resiliency, more throughput and more efficient utilization of satellite bandwidth.” A flight test last year at Hansom Air Force Base suggested the emerging tool may soon be ready to deliver on such promises. While SMC leads the PTW effort, Hanscom is working in collaboration with MIT Lincoln Laboratory and the MITRE Corp. to conduct ground and airborne terminal work. Researchers from MIT's Lincoln Laboratory flew a Boeing 707 test aircraft for two and a half hours in order to use the waveform in flight. With a commercial satellite, officials gathered data on the PTW's ability to operate under realistic flight conditions. “We know this capability is something that would help our warfighters tremendously, as it will not only provide anti-jam communications, but also a low probability of detection and intercept,” Bill Lyons, Advanced Development program manager and PTW lead at Hanscom, said in an Air Force news release. The test scenario called for the waveform to perform in an aircraft-mounted terminal. Evaluators were looking to see whether its systems and algorithms would function as expected in a highly mobile environment. “Everything worked and we got the objectives accomplished successfully,” Ken Hetling, Advanced Satcom Systems and Operations associate group leader at Lincoln Laboratory, said in an Air Force press release. “The waveform worked.” Asking for industry input should help the service to chart its next steps in the development of more protections. While the request does not specify when or how the Air Force intends to move forward, it is clearly a matter not of whetherthe military will go down this road, but rather when and how. https://www.c4isrnet.com/c2-comms/satellites/2018/10/05/air-force-looks-for-help-on-new-hard-to-jam-satellite-waveform/

  • TNO has signed a contract with ESA to start phase 2 of TOmCAT

    July 8, 2020 | International, C4ISR

    TNO has signed a contract with ESA to start phase 2 of TOmCAT

    July 2, 2020 - TNO has signed a contract with ESA to demonstrate cutting-edge optical communication technologies for future terabit-per-second telecom satellites. The TOmCAT project (Terabit Optical Communication Adaptive Terminal) will enable high-throughput laser communication between ground stations and satellites. This project is Phase 2 of TOmCAT, which started in 2017. It brings together key players in the Space and High-Tech industries, including: TNO, Airbus Defence & Space Netherlands, FSO Instruments (consortium partner Demcon), Hittech Multin (NL), Celestia-STS (NL), MPB Communications (CA), Airbus DS SAS (FR) and Eutelsat (FR), SES (LU). TOmCAT is a co-funded activity in which TNO, the companies involved, the Canadian Space Agency and the Netherlands Space Office invest through the ESAs ARTES Strategic Programme Line ScyLight. Key technologies include high-bandwidth adaptive optics, thermally stable opto-mechanics, high-power photonics, and high-throughput optical transceivers. TNO Space aims to enable secure broadband connectivity that will support the growing demand for data and increase communication efficiency. We also help stimulate economic growth in the Netherlands and Europe by enabling companies to realise new products, generate new business and improve their competitive position. TOmCAT is one example of these goals in practice. HOW DOES TNO CONTRIBUTE TO TOMCAT? TNO brings all parties together and integrates all expertise to: 1) Design the end-to-end Optical Feeder Link for high-throughput satellites. 2) Build and test cutting-edge technologies required for future Terabit Optical Ground Stations. 3) Build an end-to-end Optical Ground Terminal demonstrator and test it in a 10 km ground-to-ground link. This will show the technical feasibility of future terabit-per-second laser communication between ground and satellite terminals. TNO considers development in the TOmCAT project to be a major and important step towards the realisation of commercial Optical Ground Terminals and Optical Ground Stations for high-throughput Optical Feeder Links. Furthermore, TNO will work in the coming period, in parallel with TOmCAT phase 2, with Airbus Defence & Space Netherlands on business development and, in collaboration, position Airbus DS NL as future Original Equipment Manufacturer (OEMer) of these Optical Ground Terminals and Optical Ground Stations. TECHNOLOGY AND APPLICATION TOmCAT is a technology development project with the end goal of developing a commercial optical ground station product. With high-data-rate laser links, this ground station can communicate with the next generation of Very High Throughput Satellites. One of the innovative elements of TOmCAT is its ability to pre-correct the laser light with adaptive optics. When light moves between the surface of the Earth and space, it gets distorted due to the fluctuations in the atmosphere. TOmCAT measures the distortion of the received laser light from the satellite, and by applying the inverse of this distortion to the transmitted light, a robust communication link can be established. In order to enable this, high speed adaptive optics is required. An important objective for the project is to build a demonstrator to test and prove this concept. View source version on TNO: https://www.tno.nl/en/about-tno/news/2020/7/tno-has-signed-a-contract-with-esa-to-start-phase-2-of-tomcat/

All news