Back to news

July 8, 2019 | International, Aerospace, C4ISR

How 2 Space Norway satellites will help the Air Force in the Arctic

By:

Two Norwegian satellites will host the core components of the U.S. Air Force's next generation satellite communications system for the arctic, Northrop Grumman announced July 3.

The Air Force payloads are part of the the Enhanced Polar System Recapitalization project, a program that fills the military's satellite communications need in the arctic reguib, which is not regularly covered by the Advanced Extremely High Frequency satellite system or its predecessor, the Milstar system. EPS-R will replace the Interim Polar System, which has been providing military satellite communications in the North polar region since 1998 as an adjunct to Milstar.

Similar to the AEHF satellites, the EPS-R payloads will provide secure, anti-jamming communications for war fighters.

The Pentagon announced the $428.8 million contract with Northrop Grumman for the Air Force EPS-R payloads in February 2018. At the time, the Pentagon noted that the payloads could be hosted on a separately procured satellite.

Then, on July 3, Northrop Grumman announced it had been awarded a contract from Space Norway for two satellites capable of delivering the agency's Arctic Satellite Broadband Mission. The two Space Norway satellites will carry several payloads, including an X-Band payload for Norwegian Defense, a Ka-Band payload for Inmarsat and the two Air Force payloads.

Work on the Air Force payloads was originally expected to be completed in December 2022, though Northrop Grumman now expects both satellites will launch in late 2022.

https://www.c4isrnet.com/battlefield-tech/2019/07/05/how-2-space-norway-satellites-will-help-the-air-force-in-the-arctic/

On the same subject

  • Understanding Warfighter Performance from the Inside Out

    January 23, 2019 | International, Land

    Understanding Warfighter Performance from the Inside Out

    Measuring Biological Aptitude (MBA) aims to identify, understand, and monitor in real time the biology that underlies success in specialized roles A new program out of DARPA's Biological Technologies Office could help the Department of Defense enhance and sustain military readiness both by revolutionizing how troops train, perform, and recover, and by mitigating shortages of highly qualified candidates for extremely specialized roles. The anticipated outputs of the Measuring Biological Aptitude (MBA) program are a set of biomarkers — measurable indicators of biological processes — that correspond to traits of highly effective performance in a given role, along with new tools to measure and report on those biomarkers in real time. This information will enable individual warfighters to understand and affect the underlying biological processes that govern their success. MBA technologies could improve training, team formation, mission performance, and post-mission recovery, yielding a better prepared, more effective, more resilient force. At its core, MBA seeks to shed light on the biological factors and processes that support peak performance in each of a set of military specializations. The research will work backwards from phenotypes — that is, how an individual's fixed genetic code expresses as externally observable cognitive, behavioral, or physical traits — and attempt to establish the biological mechanisms that translate underlying genetic makeup into phenotypic traits. At present, those mechanisms of translation — also known as expression circuits — are largely a mystery. MBA researchers will develop new assays and technologies to monitor and report on the biomarkers that reveal the activity of key expression circuits. “With existing technology scientists are able to read out genotype and measure and observe certain aspects of phenotype. Most of what happens in between is a black box,” said Eric Van Gieson, the MBA program manager. “DARPA believes that the information inside the box — these expression circuits — can be predictive of how an individual will respond to a given stimulus or scenario, and more importantly, we believe it will help inform the individual on how to improve their performance throughout their career.” Researchers supporting MBA will initially analyze samples and other data collected from high-performing troops across select military specializations to identify biological signatures of successful performance in each of those roles and determine how they can be measured. For instance, maintaining a lowered heart rate during combat is a valuable trait and easily measured with existing wearable technology. Adaptable problem solving, resilience, and cognitive flexibility are extremely valuable, but less easily measured. MBA analyses should reveal an array of such traits and the expression circuits responsible for them. If DARPA succeeds, the resulting MBA system could support military readiness in various ways. The first improvement relates to how the military initially evaluates recruits and subsequently develops candidates for specialized roles. Many of these roles currently suffer from shortages of qualified candidates, even as more pervasive use of complex technologies and an expanding set of mission profiles are increasing demand for uniquely skilled personnel. For at least the past 50 years, initial assessment of military service members has remained essentially unchanged, comprising a basic medical screening, a standardized physical readiness test, and a written test known as the Armed Services Vocational Aptitude Battery (ASVAB) for enlisted personnel. Scores on the ASVAB feed into the preliminary determination of an individual's qualification for certain military occupational specialties. As a service member's career advances, future placement into other roles does not follow a prescribed protocol and can be based in large part on subjective measures. Against this backdrop, MBA technology could increase the objectivity of the criteria used by military selection committees, remove biases, and raise the baseline of performance for incoming recruits. Additionally, by taking biology into account, the results from MBA measurements could reveal to individuals career options that might not be apparent based on commonly accepted, externally observable traits alone. The second improvement ties to training, both before and after an individual pursues a military career. MBA technology could allow a user to assess his or her personal potential for specialized roles and proactively nurture the traits that are characteristic of successful performers. “Genotypes are fixed, but phenotypes are not. Biology is fundamentally adaptable, and that is the key to enabling performance improvements,” Van Gieson said. “What we're planning to deliver with MBA is a set of continuously updated information that empowers individuals to track their progress throughout their careers and quickly identify what aspects of training and preparation are the most productive.” Third, during missions commanders could employ real-time reporting of changes in service members' biomarkers to inform how a military operation unfolds, adding a layer of biological awareness to provide a more complete assessment of the mission space. Commanders could shift resources or adjust strategies and tactics based on how squad members are performing. Following a mission, biomarker reporting could likewise guide recovery practices and indicate potential health issues. The overall MBA program will be informed by consultations with independent expert advisors in the ethical, legal, social, and regulatory aspects of the work, with particular emphases on privacy, data protection, and responsible utilization of data by individuals. MBA performer teams will be required to provide medical guidance as part of any human study through an embedded genetic counselor, sports therapist, or similar specialist. “Human beings are extremely complex, and although we expect to gain valuable new insights by measuring biology, we also understand that people are not locked into predetermined fates,” Van Gieson explained. “Any breakthroughs we achieve in the MBA program will necessarily be used to address shortages in critical roles by expanding opportunities, not limiting them. If we can provide people with information on their unique biology, and empower them to affect and measure gains in key traits, we'll have opened career pathways that they may not have previously considered.” DARPA will hold a Proposers Day on February 12, 2019, in Arlington, Virginia, to provide more information about MBA and answer questions from potential proposers. For details of the event, visit https://go.usa.gov/xEZeT. A forthcoming Broad Agency Announcement will include complete program objectives, schedules, and metrics. Team should have experience in human performance, phenotyping, multi-scale biology, physiology, biomarker detection and tracking, device development, and various other aspects that will be specified in the announcement. https://www.darpa.mil/news-events/2019-01-22a

  • Key lawmakers flex new positions to bolster shipbuilding industry

    June 13, 2023 | International, Naval

    Key lawmakers flex new positions to bolster shipbuilding industry

    Lawmakers representing major shipbuilding states have taken on new leadership roles in Congress — and they're looking to expand the industry's capacity.

  • The US Navy’s modernization rush must not harm mine countermeasures

    May 11, 2020 | International, Naval

    The US Navy’s modernization rush must not harm mine countermeasures

    By: Rep. Rob Wittman As the world continues to grapple with the COVID-19 pandemic, we are reminded that even in a time of unprecedented technological growth and development, simple and primitive threats have the ability to radically alter our way of life. In spite of astonishing medical advancements, some threats, unfortunately, remain timeless. Many people have drawn comparisons between the current coronvirus pandemic and the Spanish flu pandemic of 1918. The Spanish flu was caused by an H1N1 virus that was first identified in the United States in military personnel in the spring of 1918. It would eventually infect one-third of the global population, killing approximately 675,000 people in the United States and an estimated 50 million people worldwide. All of this was happening in the midst of the “war to end all wars” — World War I. While the homeland was battling the flu pandemic, the U.S. Navy was battling the U-boat threat in the Atlantic. In World War I, German submarines sank almost 5,000 ships, most of them merchant vessels. To help counter the U-boat threat, the United States and the United Kingdom embarked on an unprecedented and ambitious project: the construction of the North Sea Mine Barrage — a 230-mile-long underwater barrier of sea mines stretching from Aberdeen, Scotland, to Ekersund, Norway. The effort was a marvel of modern manufacturing, producing 1,000 sea mines every day. Over five months, the allies eventually laid over 70,000 sea mines, helping to contain the U-boat threat and protect allied shipping. As a second wave of the flu pandemic raged across the globe, World War I finally came to an end in November 1918. The American and British navies now had the task of cleaning up 70,000 live sea mines in the unforgiving North Sea. These primitive mines were anchored to the bottom of the sea, and the U.S. and U.K. had the advantage of knowing precisely where they were located because they had laid them. Despite those advantages, it took 82 ships and over 4,000 men — 10 times the assets that were required to lay the mines — to clean up the North Sea Mine Barrage. After almost a year of mine-clearing efforts, the operation was declared complete. Navy studies would later reveal that only approximately 40 percent of the American mines had actually been cleared, and mines continued to wash ashore for years after the end of the war. Fast forward a century and sea mines have proliferated around the world. Since the end World War II, sea mines have damaged or sunk four times as many U.S. Navy ships as any other method of attack. U.S. adversaries have paid attention. Russia was a pioneer in mine warfare and is estimated to have as many as 250,000 sea mines in its inventory. China is not far behind, with an inventory of around 100,000, including some of the world's most advanced mines. China has hundreds of mine-capable ships and aircraft, and could deploy thousands of mines a day during a conflict. To counter the mine threat, the U.S. Navy relies on 11 wooden-hulled Avenger-class mine countermeasures ships, 31 MH-53E Sea Dragon helicopters and a handful of explosive ordnance disposal platoons. The Navy wants to retire both the Avengers and Sea Dragons by 2025, while efforts to field any replacement capability have continued to falter. While the U.S. Navy has focused its research and funding on countering emerging threats such as advanced radars and hypersonic missiles, a time-tested threat waits patiently in the waters around the globe; and if we ignore the lessons of history, a centuries-old technology could lead to our defeat. Mine warfare, like public health, is an area that rarely attracts attention or significant investment until a crisis emerges. We should not wait until American lives are in peril before we take action. We need to change course immediately. First, the Navy must maintain its existing mine countermeasures forces until a credible replacement is fielded. Second, the Navy must make a significant investment to recapitalize the mine countermeasures force both in time and quantity to deliver a credible force. Unfortunately, the Navy has spent billions of dollars and wasted precious years pursuing a mine countermeasure module program that, even if it worked as advertised, would have neither the capability nor the capacity to effectively counter an enemy mine threat anticipated in our National Defense Strategy. Whether it's a pandemic or a proliferated naval threat, our citizens expect the United States to respond effectively, and we must make the necessary investments to counter the threats to our nation and our Navy. https://www.defensenews.com/opinion/commentary/2020/05/08/the-us-navys-modernization-rush-must-not-harm-mine-countermeasures/

All news