Back to news

December 2, 2019 | International, Aerospace

Gripen E/F le dernier appareil suédois ?

Yannick Smaldore

Il y a douze ans, Saab annonçait la production du Gripen Demo, un démonstrateur technologique représentatif d'une nouvelle génération de chasseurs légers Gripen que le constructeur suédois entendait lancer tant sur le marché domestique qu'à l'exportation. Après un parcours parfois mouvementé, la dernière mouture de l'avion, le Gripen E/F, s'apprête à être livrée à ses deux clients. L'occasion pour DSI de revenir sur l'unique programme de chasseur de nouvelle génération actuellement en développement en Europe.

En avril 2008, sur le site de Linköping, en Suède, Saab dévoile le Gripen Demo, adapté d'une cellule de Gripen D et première étape vers la prochaine génération de chasseurs légers de l'avionneur suédois. Si l'avion se rapproche extérieurement d'un Gripen biplace standard, un œil averti distingue rapidement des différences loin d'être anodines.

Gripen NG, un nouvel ancien avion

Le train d'atterrissage principal, qui se rétracte habituellement sous le fuselage, a été déplacé dans des logements conformes sous la voilure, permettant d'installer trois points d'emport ventraux au lieu d'un, mais aussi de combler les anciens logements de roues par des réservoirs internes supplémentaires. Les entrées d'air sont également agrandies afin d'alimenter un unique moteur F414 de General Electric, évolution 20 % plus puissante du F404 produit sous licence par Volvo pour le Gripen de base.

Pour sa prochaine itération du Gripen, l'avionneur suédois propose d'intégrer dans cette cellule élargie ce qui se fait de mieux en matière de capteurs et de systèmes de combat. Le tout en respectant une enveloppe budgétaire extrêmement réduite (1) et un calendrier très serré, et en gardant comme ambition de redéfinir complètement la gestion des programmes aéronautiques militaires, rien de moins. Et une décennie plus tard, malgré quelques revers, Saab pourrait bien être en passe de tenir (presque) toutes ses promesses avec son Gripen NG (2).

En 2011, la Suisse annonce son intention de commander 22 Gripen NG, ouvrant la voie à une commande de 60 exemplaires de la part de la Flygvapnet suédoise, et aux crédits de développement associés. En 2014, c'est au tour du Brésil de passer une commande ferme pour 36 appareils.

Mais le programme connaît un premier coup dur, une votation populaire conduisant la Suisse à annuler sa commande d'avions de combat, ce qui force Saab à ralentir sensiblement son calendrier de développement. Avec plus d'un an de retard, en mai 2016, le premier Gripen E de présérie est dévoilé à la presse et montre immédiatement le paradoxe de ce nouvel appareil : à part une cellule plus longue de 50 cm et quelques différences extérieures, le futur de l'aviation de combat tel qu'annoncé par Saab ressemble à s'y méprendre au Gripen originel. Et pourtant, les évolutions techniques, numériques, conceptuelles et managériales sont bien là, discrètes, mais indispensables à la réussite du programme.

Le Gripen E/F sur le plan technique

Conserver une cellule pratiquement inchangée découle d'un choix stratégique de la part de Saab qui ne dispose pas des ressources pour développer une toute nouvelle plate-forme, et qui estime que les avancées en matière de capteurs et de travail collaboratif intra-patrouille rendent caduque la furtivité passive des avions dits de cinquième génération. Son Gripen étant déjà relativement discret et bien né, il est décidé d'en conserver l'aérodynamisme autant que possible. Avec une masse maximale passée de 14 t à 16,5 t, un emport en carburant interne augmenté de 40 % et la capacité d'emporter de nouveaux réservoirs externes plus volumineux, le Gripen NG ambitionne toutefois de s'extraire de la catégorie des chasseurs de défense légers pour marcher sur les plates-bandes des biréacteurs médians. Par rapport au Gripen C/D, les Gripen E/F voient l'intégralité de leurs systèmes évoluer vers des équipements de dernière génération.

En matière de capteurs, Saab a principalement fait appel à Selex‑ES, depuis intégré à Leonardo. Ce dernier fournit le radar Raven ES‑05, variante du Vixen 1000E. Équipé d'une antenne AESA combinée à un repositionneur mécanique, le Raven possède une ouverture de 200°, contre 140° habituellement pour les radars AESA à antenne fixe. Une telle configuration permet théoriquement de continuer à illuminer une cible alors que le Gripen se trouve sur un vecteur d'éloignement, une capacité qui pourrait donc être exploitée en combat aérien à longue portée. L'IFF Mode 5 intégré au bloc radar est doté d'antennes latérales, afin de garantir une identification de la cible sur l'ensemble du champ d'action du radar, et une optronique infrarouge Skyward‑G est implantée au-dessus du radar. Cet IRST constituerait alors le principal outil de détection contre des cibles furtives. Radar, IRST et IFF sont enfin conçus pour travailler de manière collaborative, chaque équipement contribuant à construire une situation tactique unique que le pilote consulte sur son très large affichage principal, composé d'un unique écran tactile WAD (Wild Aera Display).

Comme souvent avec les productions suédoises, le Gripen E/F devrait aussi se démarquer du marché par son équipement de communication et de guerre électronique. En plus des radios tactiques numériques et d'une antenne SATCOM, qui s'imposent de manière standard sur les nouveaux avions de combat, Saab propose plusieurs solutions de liaisons de données, notamment la L‑16 compatible OTAN, mais aussi son Link-TAU à grande bande passante. Fonctionnant en bande UHF, il permet aux Gripen d'une même patrouille d'échanger des données à longue distance et, dans un avenir proche, de fusionner les données issues de leurs capteurs respectifs pour affiner la qualification des pistes et la situation tactique. Pour la guerre électronique, Saab propose son système à large bande MFS-EW, dernière évolution de sa gamme AREXIS. Typique de l'état de l'art en la matière, ce système multifonction est basé sur des antennes AESA en nitrure de gallium (GaN) réparties sur la dérive et au niveau des rails lance-missiles. AREXIS s'appuie largement sur l'usage de systèmes de brouillage à mémoire de fréquence radio numérique, ou DRFM, qui analysent le signal radar adverse et émettent une onde retour modifiée. De quoi tromper l'ennemi sur sa position, sa nature ou sa vitesse, voire de disparaître complètement de certains écrans radars, en théorie. Si de tels systèmes se rencontrent déjà aujourd'hui, notamment sur le Rafale ou sur l'EA‑18G Growler, le Gripen NG innoverait par la capacité de traitement de signal offerte de ses calculateurs, sa capacité d'attaque électronique intégrée, mais aussi par la présence du système BriteCloud de Leonardo, un petit brouilleur DRFM éjecté par les lance-leurres de l'avion et spécifiquement conçu pour tromper les missiles assaillants.

https://www.areion24.news/2019/11/29/gripen-e-f-le-dernier-appareil-suedois%E2%80%89/

On the same subject

  • BAE Systems and QinetiQ have signed a framework agreement which will see both parties collaborate in the area of autonomous uncrewed air systems (UAS) and mission management systems.

    September 14, 2023 | International, Aerospace

    BAE Systems and QinetiQ have signed a framework agreement which will see both parties collaborate in the area of autonomous uncrewed air systems (UAS) and mission management systems.

    The autonomous mission management system enables operators to use a mix of crewed and uncrewed assets collaboratively on the battlefield, all managed by a human decision maker.

  • Air Force begins in-house JSTARS maintenance amid Northrop Grumman’s shortfalls

    August 1, 2018 | International, Aerospace

    Air Force begins in-house JSTARS maintenance amid Northrop Grumman’s shortfalls

    By: Kyle Rempfer The Air Force began conducting its own depot maintenance for JSTARS July 17 at Robins Air Force Base, Georgia, in an effort to field the Air Force's primary ground surveillance and battle management aircraft quicker, despite contractor shortfalls. Maintenance for the E-8C Joint Surveillance Target Attack Radar System aircraft was previously done exclusively by Northrop Grumman at a facility in Louisiana, but the service has said the maintenance was too slow. Now, Warner Robins Air Logistics Complex will supplement the contractors to speed up the process. “Historically, the contractor has averaged about 400 days per aircraft,” Air Force Material Command spokesman Derek Kaufman told Air Force Times. “The driver has been to increase the number of aircraft available for operations and training. The Air Force intends to fly JSTARS into the mid-to-late 2020s, while the follow-on Advanced Battle Management System [ABMS] is developed," Kaufman said. The Air Force has not released exactly what the ABMS entails, but it will fuse information from satellites, drones, ground sensors and manned ISR aircraft. Because Robbins AFB is also playing host to the initial elements of the ABMS program, Kaufman said the base will continue to play a role in the command and control mission. In the meantime, maintenance delays for existing JSTARS must be streamlined, according to the press release announcing the push. “We've been focusing intensely for a couple of years on improving contractor-led depot performance, but aircraft are still remaining in depot too long,” said Steven Wert, the Air Force's program executive officer for battle management, who oversees these efforts. “We have to find ways to increase throughput and overall depot capacity, and we believe this option is well worth exploring.” The work done at the new facility will help the Air Force better understand the costs of performing JSTARS depot maintenance on its own. “Should this first organic induction prove successful, we currently plan two more JSTARS aircraft to be inducted, one per year,” Kaufman said. It's important to note that this maintenance plan is separate from efforts to retire the Air Force's fleet of 17 JSTARS. The 2019 defense authorization bill allocates funds for the ABMS program, but the Air Force will not be able to retire any of these planes until the second phase of that program is declared operational, according to Congress' bill. As a result, service officials are anxious to get more JSTARS into the air for operations and training while waiting to bring the ABMS program online. In addition to slow delivery, Northrop Grumman has had some issues with their maintenance in the past. An Air Force investigation released in March 2017 showed that contract maintainers left drainage holes covered on the bottom of a JSTARS' radome during depot maintenance between March 2015 and July 2016. This caused the radome to collect water and inflicted $7.35 million worth of damage to the aircraft. That damage was discovered on July 28, 2016, when the JSTARS aircraft assigned to the 116th Air Control Wing at Robins experienced radar failures during checks conducted by Air Force radar specialists. “When the specialists opened the radome for the radar, they discovered portions of the radar immersed in standing water with visible corrosion damage,” the report states. In the future, inducting more aircraft into the Air Force's own depot maintenance facility could offer some advantages, according to the service. The program office, operational wings, functional check flight crews and Air Combat Command's flight test detachment are all co-located at Robins. These locality benefits could help cut down on transportation costs. Additionally, start-up costs should be minimal because Robins already hosts the E-8C operational wings, according to the Air Force. “Our dedicated professionals and mission partners have extensive experience in overhauling and modifying large aircraft like the C-130, C-17 and C-5 fleet. I'm confident our team can leverage this experience and help the JSTARS community improve aircraft availability,” said Brig. Gen. John Kubinec, commander of Warner Robins Air Logistics Complex, in another press release. “Our team is excited about this opportunity and we stand ready to support this effort by working closely with the PEO and Northrop Grumman.” The Air Force still has an agreement with Northrop Grumman that runs through 2022, called a Total System Support Responsibility contract. The depot maintenance at Robins “would supplement, not supplant," the work being done by the existing contract, the Air Force clarified. “In fact, the Air Force will need Northrop's help to successfully execute this proof of concept,” according to the release. https://www.airforcetimes.com/news/your-air-force/2018/07/31/air-force-begins-in-house-jstars-maintenance-amid-northrop-grummans-shortfalls/

  • Northrop Grumman begins building first Triton UAV for Australia

    October 29, 2020 | International, Aerospace, Naval, C4ISR

    Northrop Grumman begins building first Triton UAV for Australia

    Gareth Jennings Northrop Grumman commenced assembly of the first of up to seven MQ-4C Triton high-altitude, long-endurance (HALE) unmanned aerial vehicles (UAVs) for Australia, it announced on 27 October. The milestone saw the first jig-load for a Triton intelligence, surveillance and reconnaissance (ISR) UAV for the Royal Australian Air Force (RAAF) take place at Northrop Grumman's Moss Point facility in Mississippi. Final assembly and flight testing will follow at the company's Palmdale facility and at Edwards Air Force Base in California, ahead of delivery to Australia in 2023. “The MQ-4C Triton will be a very important ISR capability for Australia,” Air Commodore Terry van Haren, the RAAF's air attaché to the Australian Embassy in the United States, said during the ceremony that was also attended by senior Australian and US government and military figures. “It is ideally suited for Australian operating conditions, given its high altitude, long endurance, and impressive sensor suite. The Royal Australian Air Force looks forward to operating the MQ-4C alongside its other ISR and response aircraft such as the [Boeing] P-8A Poseidon [maritime multimission aircraft (MMA)].” Australia currently has three Tritons in the US Navy's (USN's) low-rate initial production (LRIP) Lot 5, which also includes two main operating bases, and one forward operating base for the country in an integrated functional capability-four (IFC-4) and multiple intelligence configuration. IFC-4 functionality will add a signals intelligence capability to the UAV's baseline IFC-3 configuration. https://www.janes.com/defence-news/news-detail/northrop-grumman-begins-building-first-triton-uav-for-australia

All news