Back to news

March 18, 2020 | International, Aerospace

FVL: Bell, Sikorsky-Boeing Split $181M To Finalize FLRAA Designs

After two years of intensive digital engineering, in 2020 the Army will pick either a Bell tiltrotor or a Sikorsky-Boeing compound helicopter to replace the UH-60 Black Hawk.
By SYDNEY J. FREEDBERG JR.

WASHINGTON: A Sikorsky-Boeing team won a $97 million award to refine their SB>1 Defiant high-speed helicopter over the next two years, the Army announced today, while Bell Textron won $84 million for its V-280 Valor tiltrotor. The two designs are vying to replace the Reagan-era UH-60 Black Hawk, the Army's workhorse air assault and medevac transport.

The difference in amounts purely reflects the different approaches the two teams proposed for what's called Competitive Demonstration & Risk Reduction, Army officials told reporters. It doesn't imply either team has an advantage going into 2022, when the service will choose one design as its Future Long-Range Assault Aircraft (FLRAA), with the first operational units flying in 2030.

FLRAA is just part of the flying “ecosystem” of manned and unmanned aircraft that the Army is developing under its Future Vertical Lift Cross Functional Team, which in turn is just one of eight CFTs working on 31 high-priority projects. But FLRAA has been unusually visible, literally, because – as part of a program called the Joint Multi-Role Tech Demonstration – both companies have prototype aircraft actually flying.

As we've reported previously, the SB>1 Defiant started flight tests a year later than the V-280 Valor, but Army officials reasserted today they'll have enough test data on both aircraft.

“The flight envelope continues to expand for Sikorsky-Boeing, so they're flying a bit more aggressively now than the V-280,” said Brig. Gen. Walter Rugen, head of the FVL CFT. “Towards the end of this fiscal year, maybe August, we're going to see very comparable data on both.”

“Flight time is only one of the inputs that goes into a multivariable non-linear calculation,” added the Army's aviation acquisition chief, Program Executive Officer Pat Mason. Not all flight hours are equally valuable, he told reporters, and flight hours alone are not enough. “[It's] what you did in flight, what you've done in modeling and simulation, how you're administering model design, how you [set up] your digital engineering development environment, what you've done in your component test, lab test, SIL [System Integration Lab] test. Taking the totality of those elements into consideration, what we see is a good competition between two vendors.”

So while the two aircraft will continue flying to provide more performance data, the lion's share of the work over the next two years will be digital, explained the Army's program manager for FLRAA. “The preponderance of this effort is associated with digital engineering and model-based systems engineering,” Col. David Philips said. That means taking the real-world data from physical tests and rigorously refining every aspect of the design to meet the Army's needs from flight performance, combat survivability, affordability, sustainability, safety and more.

The program's reached the phase of design refinement that's traditionally handled by engineers with slide rules on “reams of paper,” Mason explained, but which will now be accomplished in painstakingly precise virtual models and simulations of every aspect of the aircraft.

“That is the future of design,” Mason said. “The key is that digital environment.... digital engineering and model-based engineering.”

The flight tests of physical aircraft are proving out their novel configurations – designed to achieve high speed and long range that are aerodynamically unattainable for conventional helicopters. But the digital design phase is especially suited for working out the software that's essential to everything from flight controls to navigation to evading incoming anti-aircraft missiles.

Rather than have each vendor fit the electronic jigsaw together in their own unique, proprietary way, the Army insists that FLRAA, its sister design the FARA scout, and a whole family of drones all use the same Modular Open Systems Architecture. MOSA is meant to ensure that all the aircraft can easily share data on everything from maintenance diagnostics to enemy targets, and that the Army can easily replace specific components (hence “modular”) using whatever vendor offers the best technology (hence “open”).

To ensure different vendors' products plug and play together, Mason said, “we specify what we need in those interfaces, and we flow those out in models.” Those models will include simulations of the aircrafts' physical characteristics, but, since they're software themselves, they can contain the actual prototype code for the Modular Open Systems Architecture.

In other words — let's get digital.

https://breakingdefense.com/2020/03/fvl-bell-sikorsky-boeing-split-181m-to-finalize-flraa-designs

On the same subject

  • The Five Most Important Facts About The F-35 Fighter

    February 15, 2021 | International, Aerospace

    The Five Most Important Facts About The F-35 Fighter

    When the Clinton administration first conceived the notion of a “joint strike fighter” in 1995, it was the ideal solution to a host of military challenges. The basic idea was a family of highly survivable tactical aircraft that could share common technology to accomplish a dozen different missions for three U.S. military services. The Air Force would use it to replace Cold War F-16 fighters in aerial combat, bombing of ground targets and close air support of troops. The Navy would use it to extend the striking range of carrier-based aircraft. The Marines would use it to land on a dime anywhere expeditionary warfare was being waged. And everybody, including allies, would use it to collect vast amounts of intelligence that could be shared securely with coalition partners in future conflicts. From the beginning there were those who thought the joint strike fighter was an unrealistic dream—a project that expected too much from one plane, and would likely go into a tailspin as costs mounted. The program probably never would have gotten off the ground if military threats had been at a fever pitch. But the Soviet Union had collapsed and China was an afterthought at 3% of global GDP, so the Clinton administration decided to take a gamble. Today, that gamble has paid off. Hundreds of the planes, now designated F-35s, are operational with ten military services around the world. It took longer to come to fruition than originally planned, but in the end the joint strike fighter met its goals for survivability and versatility. That makes it one of the greatest engineering feats of the post-Cold War generation—a testament to the discipline and skill of the American aerospace industry. However, unless you've been following the F-35 program closely, you probably don't know most of this. President Trump entered office with little understanding of F-35, and only gradually came to grasp why it mattered so much to the joint force. The Biden administration hopefully will exhibit a smoother learning curve. Just to be on the safe side, though, it's worth repeating for the umpteenth time what makes F-35 unique. It really is invisible to enemies. When F-35 participates in training exercises, it typically defeats adversary aircraft at a rate of better than 20-to-1. It would do the same in wartime against Russian or Chinese fighters, because it was designed to absorb or deflect radar energy, so opposing pilots can't see it before they are shot down. In addition, F-35 is equipped with an advanced jamming system that tricks or suppresses hostile radars, both in the air and on the ground. Enemy radars might detect something in the distance, but they can't track it or target it. Also, F-35's powerful turbofan engine masks and dissipates heat before heat-seeking missiles can home in. It is more than a fighter. F-35 isn't just the most survivable combat aircraft ever built, it is also the most versatile. In its fighter role it can clear the skies of opposing aircraft that threaten U.S. forces. In its strike role, it can precisely destroy a vast array of targets on the ground (or at sea) with a dozen different smart bombs and missiles. But that is just the beginning. F-35's onboard sensors can collect and share intelligence from diverse sources across the spectrum. Its jamming system and air-to-air munitions make it a superior escort for less survivable aircraft. Its vertical-takeoff-and-landing variant can land anywhere Marines need it to be, while its Air Force version can carry nuclear weapons to provide regional deterrence. The cost of each plane has fallen steadily. As the government planned, the cost to manufacture each F-35 has fallen steadily with each new production lot. If fact, it has fallen at a faster rate than Pentagon estimators expected. At $78 million, the price tag for the Air Force variant in the latest lot is similar to that for the F-16 which the new plane will replace, even though it is much more capable. It is also far below the list price for commercial jetliners. The cost of keeping F-35s operational and ready for combat is also falling. The cost per flight hour for each plane has fallen 40% since 2015, and further savings are expected as maintenance procedures are refined. Prime contractor Lockheed Martin LMT -0.4% LMT -0.4% LMT -0.4% (a contributor to my think tank) has proposed a performance-based logistics package in which it would assume much of the financial risk for assuring the fighters are fit for combat. Many U.S. allies have committed to the program. A majority of America's most important allies have elected to replace their Cold War fighters with the F-35. These include Australia, Belgium, Demark, Israel, Italy, Japan, the Netherlands, Norway, South Korea and the United Kingdom. Several of these countries helped to pay for the plane's development, and now contribute to its production. Allies favor the F-35 for its price and performance, but also because coalition warfare unfolds more smoothly when participants share the same capabilities. The “interoperability” of so many friendly air forces flying the same highly survivable, versatile fighter will ease the challenge of executing complex war plans in the future. The domestic economic impact is huge. The F-35 airframe is integrated in Texas. Its engines are made in Connecticut. Its jamming system is manufactured in New Hampshire. Altogether, there are 1,800 U.S. based suppliers to the program sustaining over a quarter-million jobs. The annual economic impact of the program in the U.S. is estimated at $49 billion. Additional suppliers are located in allied countries. Whether at home or abroad, the vast scale of the F-35 program, with over 3,000 aircraft likely to be delivered, has a significant impact on communities. Although national security is the sole rationale for building the plane, it helps to pay for houses and schools in thousands of communities, and makes a sizable contribution to the U.S. trade balance. Because of F-35, America will dominate the global market for tactical aircraft through mid-century. Companies engaged in building F-35 contribute to my think tank. https://www.forbes.com/sites/lorenthompson/2021/02/12/the-five-most-important-facts-about-the-f-35-fighter/?ss=aerospace-defense&sh=ee75fa760b57

  • Lockheed Martin Wins $1.8B F-35 Support Contract

    July 5, 2021 | International, Aerospace

    Lockheed Martin Wins $1.8B F-35 Support Contract

    Lockheed Martin Wins $1.8B F-35 Support Contract

  • EU member countries push back on Italy’s call for European army

    February 5, 2024 | International, Land

    EU member countries push back on Italy’s call for European army

    The EU is developing a Rapid Deployment Capability force of up to 5,000 troops from member countries for use in non-permissive environments.

All news