Back to news

May 19, 2023 | International, Naval

Fincantieri to build the fourth Constellation-class frigate for the US Navy

The contract for the lead frigate and 9 option ships, signed in 2020, has a cumulative value of 5.5 billion dollars, including post-delivery availability support and crew training.

https://www.epicos.com/article/762533/fincantieri-build-fourth-constellation-class-frigate-us-navy

On the same subject

  • Lockheed Faces Intense Competition To Build Greece’s Next Frigate

    August 6, 2021 | International, Naval

    Lockheed Faces Intense Competition To Build Greece’s Next Frigate

    Analysts say a major advantage Lockheed has over its European competitors is the kind of lifetime warranty a deal with the U.S. government provides, offering full access to Naval Sea Systems Command and its expertise.

  • The Pentagon wants self-sufficient search-and-rescue drones

    January 7, 2020 | International, Aerospace

    The Pentagon wants self-sufficient search-and-rescue drones

    By: Chiara Vercellone WASHINGTON – The Department of Defense is seeking input from industry partners on using artificial intelligence and drones in humanitarian aid and disaster relief missions. In a Dec. 23 request for information, the Pentagon's Joint Artificial Intelligence Center (JAIC) called for market research to identify existing technology that could contribute to the rapid deployment of self-sufficient drones on disaster response operations. The drones should be able to fly a predetermined area and find people or man-made objects, on land or at sea, in tough conditions including haze, clouds, fire and other obstacles. The drones should prompt when to examine findings through a remote digital monitor, allowing analysts to simultaneously focus on other missions without having to constantly watch the monitor. To support the initiative, the drones must be capable of operating for at least two hours at 50 knots airspeed; cover a minimum of 100 square nautical miles during flight; be launched from various air, sea and ground platforms; search a geofenced area; and resist being dropped from another aircraft in flight, according to the RFI. In addition, JAIC is looking for drone manufacturers and artificial intelligence software companies to develop solutions relating to platforms, sensors, edge AI processing and detecting algorithms that would provide drones with the necessary skills to enable search-and-rescue operations. Industry partners may respond individually or partner with other vendors to provide a joint response. Responses should be submitted electronically no later than Jan. 20. https://www.c4isrnet.com/industry/2020/01/06/the-pentagon-wants-self-sufficient-search-and-rescue-drones

  • DARPA: Defending Against Adversarial Artificial Intelligence

    February 7, 2019 | International, C4ISR

    DARPA: Defending Against Adversarial Artificial Intelligence

    Today, machine learning (ML) is coming into its own, ready to serve mankind in a diverse array of applications – from highly efficient manufacturing, medicine and massive information analysis to self-driving transportation, and beyond. However, if misapplied, misused or subverted, ML holds the potential for great harm – this is the double-edged sword of machine learning. “Over the last decade, researchers have focused on realizing practical ML capable of accomplishing real-world tasks and making them more efficient,” said Dr. Hava Siegelmann, program manager in DARPA's Information Innovation Office (I2O). “We're already benefitting from that work, and rapidly incorporating ML into a number of enterprises. But, in a very real way, we've rushed ahead, paying little attention to vulnerabilities inherent in ML platforms – particularly in terms of altering, corrupting or deceiving these systems.” In a commonly cited example, ML used by a self-driving car was tricked by visual alterations to a stop sign. While a human viewing the altered sign would have no difficulty interpreting its meaning, the ML erroneously interpreted the stop sign as a 45 mph speed limit posting. In a real-world attack like this, the self-driving car would accelerate through the stop sign, potentially causing a disastrous outcome. This is just one of many recently discovered attacks applicable to virtually any ML application. To get ahead of this acute safety challenge, DARPA created the Guaranteeing AI Robustness against Deception (GARD) program. GARD aims to develop a new generation of defenses against adversarial deception attacks on ML models. Current defense efforts were designed to protect against specific, pre-defined adversarial attacks and, remained vulnerable to attacks outside their design parameters when tested. GARD seeks to approach ML defense differently – by developing broad-based defenses that address the numerous possible attacks in a given scenario. “There is a critical need for ML defense as the technology is increasingly incorporated into some of our most critical infrastructure. The GARD program seeks to prevent the chaos that could ensue in the near future when attack methodologies, now in their infancy, have matured to a more destructive level. We must ensure ML is safe and incapable of being deceived,” stated Siegelmann. GARD's novel response to adversarial AI will focus on three main objectives: 1) the development of theoretical foundations for defensible ML and a lexicon of new defense mechanisms based on them; 2) the creation and testing of defensible systems in a diverse range of settings; and 3) the construction of a new testbed for characterizing ML defensibility relative to threat scenarios. Through these interdependent program elements, GARD aims to create deception-resistant ML technologies with stringent criteria for evaluating their robustness. GARD will explore many research directions for potential defenses, including biology. “The kind of broad scenario-based defense we're looking to generate can be seen, for example, in the immune system, which identifies attacks, wins and remembers the attack to create a more effective response during future engagements,” said Siegelmann. GARD will work on addressing present needs, but is keeping future challenges in mind as well. The program will initially concentrate on state-of-the-art image-based ML, then progress to video, audio and more complex systems – including multi-sensor and multi-modality variations. It will also seek to address ML capable of predictions, decisions and adapting during its lifetime. A Proposers Day will be held on February 6, 2019, from 9:00 AM to 2:00 PM (EST) at the DARPA Conference Center, located at 675 N. Randolph Street, Arlington, Virginia, 22203 to provide greater detail about the GARD program's technical goals and challenges. Additional information will be available in the forthcoming Broad Agency Announcement, which will be posted to www.fbo.gov. https://www.darpa.mil/news-events/2019-02-06

All news