Back to news

April 26, 2018 | International, Aerospace

Fighter jet OEMs aim to keep pace with needed technology

Chris Thatcher

Fighter jet manufacturers are well aware that advances in technology can take years, if not decades, to introduce, creating a constant struggle to match the pace of technological change and the evolution of threats.

In a panel discussion at the Aerospace Innovation Forum in Montreal last week, executives from Airbus, Boeing, Dassault Aviation and Saab described how a change from closed “black boxes” to more open mission architecture is allowing faster and easier acceptance of technology from wider sources.

Wolfgang Gammel, head of combat aircraft for Airbus Defence and Space, acknowledged the need to be much faster to market with new technology. He noted the shift in focus from “kinetic weapons” to “data fusion and the cyber piece” now driving new capabilities, but said the goal has been to “keep flexibility” in the Eurofighter Typhoon to allow customers “to adapt the aircraft as threats change.”

He also noted the wealth of data becoming available on all advanced fighters, and the ability to predict maintenance requirements, better manage costs and improve availability, all of which should impact the overall life of the airframe.

Pontus de Laval, chief technology officer for Saab, said the life management approach to the Gripen JAS 39 has been continuous change rather than one large midlife upgrade. The version currently operated by the Swedish Air Force is “actually edition 20.”

For the Gripen NG now undergoing flight tests for the Brazilian Air Force, the aim has been to make “continuous evolvement of the platform much easier,” he said. That has been achieved in part by separating flight critical and mission critical systems, to allow Saab and the customer to introduce new sensors and other capabilities without significantly affecting “systems that keep the aircraft flying.”

By using virtualization of avionics to introduce software and hardware changes, Saab has also been able to minimize the effect of one on the other as upgrades are made.

“Software kills you in big programs if you are not careful,” de Laval observed.

The company has also recognized the role artificial intelligence and machine learning could play, especially on the future computing capacity of a fighter, and is investing about US$400 million in research to understand to prepare and capitalize.

Boeing has long bet on incremental technology upgrades for the Super Hornet, providing a “roadmap forward” for the platform. But the Block 3 will introduce the Distributed Targeting Processor-Networked (DTP-N), an open mission system “to enable these future technologies,” said Troy Rutherford, director of the company's HorizonX program.

From autonomy to AI, the user experience in the cockpit will change dramatically. Boeing too has invested heavily, seeking small start-up companies to develop these capabilities.

“What plays over the course of time is the ability to adapt to the threat,” he said.

Any new technology must reach a certain level of maturity before it can be integrated into an advanced fighter. Bruno Stoufflet, chief technology officer for Dassault Aviation, said the company has leveraged its Falcon family of business jets “to embark some demonstrations” of new capabilities.

“There is a strong commitment of the French weapon agency to have a family of demonstrations in the future based on [the] Rafale.”

That has opened the door to more research with small- and medium-sized business. Previously, Dassault collaborated more with academic teams or larger players in the aerospace and defence industries.

“It has changed completely. We were asked to integrate more SMEs into our research programs...so now we understand what they can bring in research and innovation projects,” said Stoufflet.

https://www.skiesmag.com/news/fighter-jet-oems-aim-keep-pace-needed-technology/

On the same subject

  • US Army begins experimenting with new network tools

    July 28, 2020 | International, C4ISR

    US Army begins experimenting with new network tools

    Andrew Eversden WASHINGTON — The U.S. Army's combat capabilities development team kicked off a monthslong experiment last week to test emerging technologies that could be added into the service's tactical network. The third annual Network Modernization Experiment at Joint Base McGuire-Dix-Lakehurst in New Jersey started July 20 and ends Oct. 2. NetModX provides an opportunity for the Combat Capabilities Development Command's C5ISR Center — or Command, Control, Communication, Computers, Cyber, Intelligence, Surveillance, and Reconnaissance Center — to perform field tests with emerging capabilities that have largely been tested in the lab. Field tests with simulated threat environments, as opposed to lab tests, are important because technologies react in unexpected ways due to realities like different types of trees or terrain. This year's theme for NetModX is mission command and command-post survivability, which means participants will focus on technologies that could be fielded in the Army's Integrated Tactical Network Capability Set '23 and Capability Set '25 — future iterations of network tools that the Army plans to deliver to soldiers every two years. In this year's test, the C5ISR Center is testing communications capabilities that allow for distributed mission command systems across the battlefield “and wider area,” said Michael Brownfield, chief of the future capabilities office at the C5ISR Center. “We've learned by watching our enemies fight, and we know that to survive on the battlefield, No. 1, they can't be able to see us,” Brownfield told C4ISRNET in an interview. “And No. 2, we have to distribute our systems across the battlefield to give them multiple targets and multiple dilemmas in order to survive.” NetModX is also testing network resiliency capabilities that could be delivered as part of Capability Set '23. Preliminary design review for the capability set is scheduled for April next year. To test the effectiveness of the resiliency projects the center developed in the lab, the C5ISR Center created a “state-of-the-art red cell” that attacks the network using enemy's tactics, techniques and procedures, according to Brownfield. The goal is to make sure the technology can withstand electronic attacks and allow for continuous operations in contested environments when in the hands of deployed soldiers. “What resiliency means to us is the network bends, it doesn't break,” Brownfield said. “And the commanders have the information they need and the coordination that they need to fight the battle.” A modular radio frequency system of systems is undergoing tests, and Brownfield says it will “revolutionize” the fight on the battlefield. The system automatically switches between primary, alternate, contingency and emergency, or PACE, radios by sensing if radio frequencies are being jammed. The system then responds by automatically switching radio channels to allow for seamless communications in a contested environment. Currently, “it's kind of hard to switch to alternate comms when the person you're talking to is on their primary, not their alternative comms,” Brownfield said. “And the process is very slow. It's human-driven.” Now, the automatic PACE system senses the environment in milliseconds, he said. At last year's experiment, which focused on network transport capabilities to support precision fires for multidomain operations, the center experimented with radios that could flip to new channels on their own, while launching brute force and other more sophisticated attacks against the radios to see how much stress they could handle before passing data became impossible. This year will be a little different. “This year, we're pairing different radios together and see how they can work to actually change the type of modulation schemes that we use to maneuver in cyberspace around for continuous operations while under enemy attack and under contested electronic warfare conditions,” Brownfield said. One of the top priorities for this year's experiment is allowing for projects leaders to bring their technology into to the field, no matter what stage of development they are in, to be tested in an “operationally relevant environment,” Brownfield said. The team then collects data on how the technology performs and puts it into a database where it can be queried to answer specific performance questions. “So we can ... ask the database questions like, ‘What was my latency with these two radios at this point in time,' and start to understand the true metrics of how the systems performed in the field,” Joshua Fischer, acting chief of systems engineering, architecture, modeling and simulation at the C5ISR Center, told C4ISRNET. He added that those involved are also looking at network throughput. https://www.c4isrnet.com/yahoo-syndication/2020/07/24/us-army-begins-experimenting-with-new-network-tools/

  • F-35: What The Pilots Say

    March 26, 2019 | International, Aerospace

    F-35: What The Pilots Say

    by Linda Shiner In my interviews with F-35 pilots, one word repeatedly came up: “survivability.” Surviving the Lockheed Martin F-35's primary mission—to penetrate sophisticated enemy air defenses and find and disable threats—requires what the fifth-generation jet offers: stealth and a stunning array of passive and active sensors bringing information to the pilot. The F-35 can see trouble coming—ahead, behind, or below the aircraft—far enough in advance to avoid a threat or kill it. Faced with multiple threats, the sensor suite recommends the order in which they should be dispatched. U.S. forces first took these capabilities into combat last September, when Marine F-35Bs struck the Taliban in Afghanistan (five months after its combat debut with the Israeli air force). More than 360 of the multi-service aircraft—Air Force F-35As, Marine short-takeoff-and-vertical-landing Bs, and carrier-capable Cs—have been delivered to 16 U.S. airbases and to seven other countries. Reaching these milestones has not been easy. The program's difficulties and its cost—$406 billion for development and acquisition—have been widely reported. But now the F-35 is in the hands of the best judges of its performance, its pilots. I asked eight of them—test pilots who contributed to the jet's development as well as active-duty pilots—about their experiences. Here, in their own words, are their answers. Full article: https://www.airspacemag.com/military-aviation/f-35-faces-most-critical-test-180971734/

  • Italian industry signs contract for next development phase of 6th generation air system

    January 26, 2023 | International, Aerospace

    Italian industry signs contract for next development phase of 6th generation air system

    Concept, assessment and demonstration activities that will underpin Italy’s participation in the Global Combat Air Programme (GCAP) are now underway.

All news