Back to news

August 12, 2019 | International, C4ISR

Extending Field of View in Advanced Imaging Systems

New program focuses on developing curved infrared focal plane arrays to improve optical performance and widen field of view while reducing system size of military imagers

The military relies on advanced imaging systems for a number of critical capabilities and applications – from Intelligence, Surveillance, and Reconnaissance (ISR) and situational awareness to weapon sights. These powerful systems enable defense users to capture and analyze visual data, providing key insights both on and off the battlefield. Today, nearly all imaging systems rely on detector arrays fabricated using planar processes developed for electronic integrated circuits on flat silicon. While significant progress has been made in advancing these technologies for narrow field of view (FOV) systems, optical aberrations can limit the performance at the periphery in wide FOV systems that then require large, costly, and complex optics to correct. The trade-off for correcting optical aberrations by using large, heavy lenses is a reduction in optical signal and a large size penalty, which limits their use for new and emerging capabilities.

“Tremendous progress has been made over the past 20 years towards making multi-megapixel infrared (IR) focal plane arrays (FPA) for imaging systems cost effective and available to the Department of Defense,” said Dr. Whitney Mason, a program manager in DARPA's Microsystems Technology Office (MTO). “However, limitations to the technology's performance and size remain. Current advances on the commercial side have shown the viability of small area, curved FPAs (CFPAs) for visible cameras. While these technologies have shown modest benefits, more must be done to achieve the performance and size requirements needed for imaging systems used in emerging defense applications.”

DARPA developed the FOcal arrays for Curved Infrared Imagers (FOCII) program to expand upon the current commercial trend for visible sensor arrays by extending the capability to both large and medium format midwave (MWIR) and/or longwave (LWIR) infrared detectors. The program seeks to develop and demonstrate technologies for curving existing state-of-the-art large format, high performance IR FPAs to a small radius of curvature (ROC) to maximize performance, as well as curve smaller format FPAs to an extreme ROC to enable the smallest form factors possible while maintaining exquisite performance.

FOCII will address this challenge through two approaches to fabricating a curved FPA. The first involves curving existing state-of-the-art FPAs, while keeping the underlying design intact. The focus of the research will be on achieving significant performance improvements over existing, flat FPAs, with a target radius of curvature of 70mm. The fundamental challenge researchers will work to address within this approach is to mitigate the mechanical strain created by curving the FPGA, particularly in silicon, which is very brittle.

The second approach will focus on achieving an extreme ROC of 12.5 mm to enable a transformative reduction in the size and weight compared to current imagers. Unlike the first approach, researchers will explore possible modifications to the underlying design, including physical modifications to the silicon that could relieve or eliminate stress on the material and allow for creating the desired curvature in a smaller sized FPA. This approach will also require new methods to counter the effects of any modifications during image reconstruction in the underlying read-out integrated circuit (ROIC) algorithm.

The FOCII program is hosting a proposers' day on August 13, 2019 at the Executive Conference Center, 4075 Wilson Blvd., Suite 300, Arlington, Virginia, 22203 from 9:00 a.m. to 4:00 p.m. EDT. The purpose of this meeting is to provide information on the FOCII program, promote additional discussion on this topic, address questions from potential proposers, and provide an opportunity for potential proposers to share their capabilities and ideas for teaming arrangements. The Special Notice for can be found here, https://www.fbo.gov/index.php?s=opportunity&mode=form&id=4c8a360d1f5be2e1b7e784f86b7d42fb&tab=core&_cview=0

Full details are available in the FOCII Broad Agency Announcement on FBO.gov: https://go.usa.gov/xV3EH.

https://www.darpa.mil/news-events/2019-08-09

On the same subject

  • BAE wins Marine Corps contract to build new amphibious combat vehicle

    June 20, 2018 | International, Land

    BAE wins Marine Corps contract to build new amphibious combat vehicle

    Jen Judson WASHINGTON — BAE Systems has won a contract to build the Marine Corps' new amphibious combat vehicle following a competitive evaluation period where BAE's vehicle was pitted against an offering from SAIC. The contract allows for the company to enter into low-rate initial production with 30 vehicles expected to be delivered by fall of 2019, valued at $198 million. The Marines plan to field 204 of the vehicles. The total value of the contract with all options exercised is expected to amount to about $1.2 billion. The awarding of the contract gets the Corps “one step closer to delivering this capability to the Marines,” John Garner, Program Executive Officer, Land Systems Marine Corps, said during a media round table held Tuesday. But the Corps isn't quite done refining its new ACV. The vehicle is expected to undergo incremental changes with added new requirements and modernization. The Corps is already working on the requirements for ACV 1.2, which will include a lethality upgrade for the amphibous vehicle. BAE's ACV vehicle will eventually replace the Corps' legacy amphibious vehicle, but through a phased approach. The Assault Amphibious Vehicle is currently undergoing survivability upgrades to keep the Cold War era vehicle ticking into 2035. BAE Systems and SAIC were both awarded roughly $100 million each in November 2015 to deliver 16 prototypes to the Marine Corps for evaluation in anticipation of a down select to one vendor in 2018. [BAE, SAIC Named as Finalists in Marines ACV Competition] All government testing of the prototypes concluded the first week of December 2017 and the Marine Corps issued its request for proposals the first week in January 2018. Operational tests also began concurrently. Government testing included land reliability testing, survivability and blast testing and water testing — both ship launch and recovery as well as surf transit. Operational evaluations included seven prototypes each from both SAIC and BAE Systems, six participated and one spare was kept for backup. BAE Systems' partnered with Italian company Iveco Defense Vehicles to build its ACV offering. [BAE Systems completes Amphibious Combat Vehicle shipboard testing] Some of the features BAE believed were particularly attractive for a new ACV is that it has space for 13 embarked Marines and a crew of three, which keeps the rifle squad together. The engine's strength is 690 horsepower over the old engine's 560 horsepower, and it runs extremely quietly. The vehicle has a V-shaped hull to protect against underbody blasts, and the seat structure is completely suspended. SAIC's vehicle, which was built in Charleston, South Carolina, offered improved traction through a central tire-inflation system to automatically increase or decrease tire pressure. It also had a V-hull certified during tests at the Nevada Automotive Test Center — where all prototypes were tested by the Marine Corps — and had blast-mitigating seats to protect occupants. The 3rd Assault Amphibian Battalion, 1st Marine Division out of Camp Pendleton, California, is expected to receive the first ACV 1.1 vehicles. https://www.defensenews.com/land/2018/06/19/bae-wins-marine-corps-contract-to-build-new-amphibious-combat-vehicle/

  • Army Wants New Mega-Jammer In 2023: TLS-EAB

    September 30, 2020 | International, Land, C4ISR, Security

    Army Wants New Mega-Jammer In 2023: TLS-EAB

    SYDNEY J. FREEDBERG JR. Mounted on a pair of heavy trucks, the Terrestrial Layer System – Echelons Above Brigade (TLS-EAB) will do long-range jamming for high-level HQs – and fry the circuits of incoming enemy missiles as well. WASHINGTON: The Army officially asked industry today to help take a big step towards repairing the Army's long-neglected EW corps and countering Russian and Chinese jamming – and it'll have an unexpected missile defense dimension as well. Boeing and Lockheed are still building rival prototypes for the Army's next-generation cyber/electronic warfare vehicle, the Terrestrial Layer System set to enter service in 2022. The new system, known as TLS-EAB — will be TLS's much bigger brother. The service has set a pretty brisk schedule, talking of fielding something by the end of 2023. The original-flavor TLS, aka TLS-BCT, will fit on an 8×8 Stryker armored vehicle and accompany frontline Brigade Combat Teams. TLS-Echelons Above Brigade will fill a pair of heavy trucks, probably Oshkosh FMTVs, Army officials unveiled today: One truck will carry sensors, transmitters, and a tethered drone or aerostat to detect enemy signals, triangulate their locations for artillery and airstrikes, and disrupt them electronically with a combination of jamming, wireless hacking, and deceptive signals. It'll be crewed by eight soldiers, four specializing in cyber/electronic warfare and four in signals intelligence. There will likely be sub-variants, for example with a division-level system designed to frequently relocate, while a Multi-Domain Task Force might accept a less mobile version with more range and power. But overall, this long-range offensive cyber/EW/SIGINT capability is essentially a supersized version of what the TLS-BCT will do, albeit operating over much greater distances. The other truck, however, adds a dimension absent from the brigade-level TLS-BCT: a high-powered but relatively short-ranged defensive EW capability to protect key sites like division, corps, and theater command posts. It'll be crewed by four electronic warfare soldiers, but there's no SIGINT on this variant. Instead, it'll have an “electronic countermeasure point defense suite” – again, using a mix of jamming, wireless hacking, and deceptive signals – to decoy or disable incoming enemy drones, missiles, rockets, and artillery rounds, many of which rely on radar for guidance and fusing. Because it's mounted on trucks, TLS-EAB can be a lot bigger and more powerful than the Stryker-mounted TLS-BCT or the drone-mounted jamming/sensing system known as MFEW-Air-Large. But it will share data with those systems, because they'll be closer to the front line and/or able to fly over obstacles to see distant threats. TLS-EAB will also link to other Army and interservice systems like the EWPMT command-and-control software and the TITAN satellite terminal. The defensive suite, in particular, will get warning of incoming threats from air & missile defense networks – which we can presume includes the Army's forthcoming IBCS – to “national technical means,” such as spy satellites. Now, the three Army colonels who briefed the AOC CEMAlite conference this afternoon didn't provide any details on what kind of incoming missiles the TLS-EAB defensive suite is meant to stop. Actually jamming an inbound hypersonic or ballistic missile might be prohibitively hard since those weapons fly so fast – Mach 5 and up – and may only be in range for seconds. But if you deceive the enemy's reconnaissance and targeting systems into shooting at a decoy instead of the real target, it doesn't matter how fast their missiles are — they'll still miss. It's also worth noting that the Army hasn't locked down the formal requirements for this system – a draft Abbreviated Capabilities Development Document (ACDD) is in the works – and the service intends to leave plenty of leeway for industry to propose out-of-the-box ideas. “These are our initial concept ideas and not intended to constrain or limit the industrial solution space,” said Col. Jennifer McAfee. “Please think of this is a starting point in a long and mutually beneficial conversation.” That said, all proposals need to rely on an Army-sponsored software framework known as Photon and a set of technical standards known as CMOSS. Both are intended to let the service plug and play components from different vendors instead of getting locked into one company's proprietary solution that's not compatible with other people's innovations. There's also an official Software Development Kit (SDK) to let companies integrate their sensors into the Army-standard systems. What the Army rolled out today was a draft concept of operations (CONOP) for TLS-EAB, explained the Army project manager, Col. Kevin Finch. Looking ahead, he outlined an ambitious schedule: January 2021: The Army will hold an initial industry day for interested vendors (TBD whether it'll be in-person or online). February-March 2021: Individual vendors will have the opportunity to meet one-on-one with Army officials. Meanwhile the service will put together a draft Request For Proposals (RFP) and circulate it for industry feedback. June 2021: a second industry day. July 2021: the release of the final RFP and the official launch of what's known as a Middle-Tier Acquisition process. Fall 2023 (first quarter of federal fiscal year 2024): the First Unit Equipped (FUE) will receive prototype TLS-EAB vehicles. If TLS-EAB can stick to that 2023-2024 timeline, it'll enter service along with a host of new long-range Army systems, from howitzers and hypersonics to intermediate-range missiles and missile defense lasers. But between the budgetary hit from COVID and the upcoming election, it's far from certain the Army can afford it all. https://breakingdefense.com/2020/09/army-wants-new-mega-jammer-in-2023-tls-eab/

  • Australia earmarks billions for naval infrastructure as BAE wins AUKUS submarine work
All news