Back to news

September 5, 2023 | International, Land

Exclusive: US to send depleted-uranium munitions to Ukraine | Reuters

The Biden administration will for the first time send controversial armor-piercing munitions containing depleted uranium to Ukraine, according to a document seen by Reuters and separately confirmed by two U.S. officials.

https://www.reuters.com/world/us-send-its-first-depleted-uranium-rounds-ukraine-sources-2023-09-01/

On the same subject

  • 5 things you should know about the US Navy’s new frigate

    May 7, 2020 | International, Naval

    5 things you should know about the US Navy’s new frigate

    By: David B. Larter WASHINGTON — The U.S. Navy selected Fincantieri's FREMM design for its next-generation frigate, but as with most new platforms it will be a long time before the first ship hits the fleet. The contract, awarded May 30, is for up to 10 hulls constructed at Fincantieri's Marinette Marine shipyard in Wisconsin. The Navy intends to buy at least 20 frigates. Here's what we know about what the years ahead will hold: 1) The price tag. According to Assistant Secretary of the Navy for Research, Development and Acquisition James Geurts, the first hull will cost $1.281 billion, which includes the design money for both the ship and for the work needed at the shipyard to set up a production line. It also includes all the government-furnished equipment, including things such as Raytheon's AN/SPY-6-derivative radar and Lockheed Martin's Aegis Combat System. Of that $1.281 billion, $795 million will go to the shipyard. The next hulls in the buy should cost significantly less. The Navy is aiming for a price tag of $800 million in 2018 dollars, with the threshold at $950 million. But Geurts thinks he can beat both numbers. An independent cost estimate found the follow-on hulls should cost about $781 million if all 20 are built. “The study shows this ship as selected and the program as designed delivering underneath our objective cost per platform,” Geurts said on a May 30 phone call with reporters. 2) The timeline. Detailed design of the future frigate, known as FFG(X), starts right away, Geurts said, and construction will begin no later than April 2022. The first ship should be delivered in 2026 and should be operational by 2030, with final operational capability declared by 2032, Geurts said. The contract should be wrapped up — all 10 hulls — by 2035. The intention is to buy 20 hulls, though it's unclear whether Marinette will build all 20 or if the Navy will identify a second source. 3) What could go wrong? The Navy feels like it did a lot to get this ship deal right, which could be argued was important given a not-so-hot track record with programs lately. Improving the Navy's performance on lead ships, in the wake of the Ford-class debacle, has been a focus of Senate Armed Services Committee Chairman Jim Inhofe, R-Okla. Among the steps the Navy took to retire risk with FFG(X) was to adapt many of the mature systems being designed for the Flight III destroyer program, including the latest version of the Aegis Combat System and a scaled-down version of the AN/SPY-6 radar destined for Flight III. “Some of those efforts are still maturing, such as SPY-6, but from my standpoint I'm very comfortable with how that's proceeding,” said Rear Adm. Casey Moton, program executive officer of unmanned and small combatants. Bringing industry in on the process earlier will also help reduce risk in the lead ship, Moton said. “In general, even before the solicitation went out, the fact that we had industry involved in the conceptual design phase, they were there with us in the requirements; they understood the specifications; we worked with them on cost reduction. Many of the things that tend to trip up lead ships, we took proactive steps to reduce the risk there.” 4) Room to grow. The Navy considered the ability to add new, energy intensive systems on to the ship later in its calculus in selecting FREMM as the FFG(X), according to service officials. During the competition, Fincantieri highlighted that it could fairly easily grow the electrical capacity of the ship, and that all the major computer and engine gear could be swapped out without cutting a hole in the ship, as is often necessary with current classes in the U.S. Navy's inventory. Rick Hunt, a retired Navy three-star admiral who is now a senior Fincantieri executive, told reporters that the company's bid was designed to meet the cost specifications while giving the Navy room to upgrade. “Be flexible in what you do right now, surge to more capacity as soon as we get that [requirement] and be able to grow the ship in lot changes should you need something even greater in the future,” Hunt said. Vice Adm. Jim Kilby, the Navy's top requirements officer, said growth will be important in Navy designs as the service seeks to move away from combating missiles with other missiles. “Understanding how fast the threat is advancing made the service-life allowance so important for us,” Kilby said May 30. “We didn't want [to] define discretely where we are going in the future, so having some margin to include things like directed energy and other systems, that's why it was so important. “We have an extensive laser [science and technology] program in the Navy, we have lasers on some of our ships now. We definitely view it as a requirement for the future as we move into a realm where our launchers are reserved for offensive weapons and our point defense systems are these rechargeable magazines that we can sustain for long periods of time.” 5) Lessons learned. The Navy acquisitions boss feels good about the process that produced the FFG(X) award and thinks it can be a model for other programs. “FFG(X) represents an evolution in the Navy's requirements and acquisition approach, which allowed the acquisition planning, requirements and technical communities along with the shipbuilders to develop requirements for the platform ahead of the release of the detailed design and construction request for proposal," Geurts said. “By integrating the requirements, acquisition planning and design phases, we were able to reduce the span time by nearly six years as compared to traditional platforms. All this was done with an intense focus on cost, acquisition and technical rigor so we got the best value for the war fighter and the taxpayer. It's the best I've seen in the Navy thus far in integrating all the teams together, and it's a model we're building on for future programs.” But it's unclear if a similar approach would work on a clean-sheet, new design the same way it worked for FFG(X), which uses already-developed technologies and a parent design. “Having all the folks in the room early in the process helped move the process along and move it along faster,” said Bryan McGrath, a retired destroyer captain who is now a consultant with The Ferrybridge Group. “The question comes when you consider how applicable duplicating such an effort would be if you were trying to do a clean-sheet design that was incorporating revolutionary technologies, untested technologies, perhaps even undeveloped technologies. That's a different story.” The FFG(X) will be a considerable step forward for the Navy in terms of capability, but isn't exactly a revolutionary platform that may require a different process to arrive at a solution, McGrath said. https://www.defensenews.com/naval/2020/05/05/5-things-you-should-know-about-the-us-navys-new-frigate/

  • Army's Decision On Huge Helicopter Engine Program Will Impact GE, Honeywell, United Technologies

    January 3, 2019 | International, Aerospace

    Army's Decision On Huge Helicopter Engine Program Will Impact GE, Honeywell, United Technologies

    Loren Thompson Sometime in the very near future, probably this month, the U.S. Army will announce the winner of a competition to develop a new engine for most of the service's helicopters. Called the Improved Turbine Engine Program (ITEP), it is a multibillion-dollar effort that has often been described as the Army's top aviation modernization priority. It isn't hard to see why. The weight of Army light and medium helicopters has been growing by 70-100 pounds per year since they debuted in the last century as new equipment, munitions and armor were added. As a result, both the Black Hawk utility helicopter and the Apache attack helicopter are under-powered when operating in “high-hot” conditions, meaning above 6,000 feet in temperatures of 95 degrees or greater. Such conditions are common in places like the Persian Gulf, and pose a challenge to conducting missions successfully. In 2006, the Army launched an effort to develop an engine that could provide 50% more power than the existing General Electric T700 engine (3,000 versus 2,000 shaft horsepower), while reducing fuel consumption by 25% and extending the life of the engine 20%. That in itself was a tall order, but the new engine also had to fit into thousands of fielded helicopters with minimal modifications, and it couldn't weigh more than 500 pounds (the current engine weighs 456 pounds). The Army also wanted each engine to cost much less than the T700–not just in the cost of manufacturing the new engines, but in the cost of maintaining them across a multi-decade service life. Given these very demanding requirements, and a dearth of money for modernization during the Obama years, it isn't surprising that a dozen years passed before the Army felt it was in a position to pick a design that met all the service's needs. But now it is. The choice is between a successor to the T700 built by General Electric Aviation, and a competing design offered by a joint venture of Honeywell and Pratt & Whitney (a unit of United Technologies, and contributor to my think tank). The decision has probably already been made, and simply awaits formal announcement later this month. Full article: https://www.forbes.com/sites/lorenthompson/2019/01/02/armys-decision-on-huge-helicopter-engine-program-will-impact-ge-honeywell-united-technologies

  • Slovakia looks to buy Patriot air defence system from United States
All news