Back to news

July 12, 2018 | International, Naval

Destroyers Maxed Out, Navy Looks To New Hulls: Power For Radars & Lasers

By

ARLINGTON: The Navy has crammed as much electronics as it can into its new DDG-51 Flight III destroyers now beginning construction, Rear Adm. William Galinis said this morning. That drives the service towards a new Large Surface Combatant that can comfortably accommodate the same high-powered radars, as well as future weapons such as lasers, on either a modified DDG-51 hull or an entirely new design.

“It's going to be more of an evolutionary approach as we migrate from the DDG-51 Flight IIIs to the Large Surface Combatant,” said Galinis, the Navy's Program Executive Officer for Ships. (LSC evolved from the Future Surface Combatant concept and will serve along a new frigate and unmanned surface vessels). “(We) start with a DDG-51 flight III combat system and we build off of that, probably bringing in a new HME (Hull, Mechanical, & Engineering) infrastructure, a new power architecture, to support that system as it then evolves going forward.”

“Before the end of the year, we'll start reaching out to industry to start sharing some of the thoughts we have and where we think we're going,” Galinis told a Navy League breakfast audience. “We'll bring industry into this at the right point, but we're still kind of working a lot of the technology pieces and what the requirements are right now.”

Evolution, Not Revolution

This evolutionary approach is similar to how the current Aegis combat system entered service on the CG-47 Ticonderoga cruisers in 1983 but came into its own on the DDG-51 Arleigh Burke destroyers. (Despite the difference in names, the two classes are virtually the same size). The DDG-51 is now the single most common type in the fleet, a vital part of the hoped-for 355-ship Navy, with some ships expected to serve into the 2070s:

  • There are now 64 Arleigh Burkes of various sub-types in service;
  • nine of the latest Flight IIA variant are in various stages of construction; and
  • work is beginning on the new Flight IIIs in Mississippi (Huntington Ingalls Industries) and Maine (General Dynamics-owned Bath Iron Works).

The Navy is doubling down on long-standing programs to keep its older warships up to date and on par with the newest versions. But the current destroyers just won't be able to keep up with the Flight III, which will have a slightly modified hull and higher-voltage electricity to accommodate Raytheon's massive new Air & Missile Defense Radar. A stripped down version of the AMDR, the Enterprise Air Search Radar (EASR, also by Raytheon) is already going on amphibious ships and might just fit on older Burkes as well, however.

But it's tight. On the Flight III, even with the hull modifications, “you kind of get to the naval architectural limits of the DDG-51 hullform,” Galinis told a Navy League breakfast this morning. “That's going to bring a lot of incredible capabilities to the fleet but there's also a fair amount of technical risk.”

The Navy is laboring mightily to reduce that risk on Flight III with simulations and land-based testing, including a full prototype of the new power plant being built in Philadelphia. But it's clear the combat system is out of room to grow within the limits of the current hull.

So how different does the next ship need to be? “How much more combat capability can we squeeze into the current hullform?” Galinis said. “Do we use the DDG-51 hullform and maybe expand that? Do we build a new hullform?”

“We're looking at all the options, Sydney,” he said when reporters clustered around him after his talk. “(It's in) very, very early stages... to say it'll be one system over another or one power architecture over another, it's way too early.”

“We're still working through what that power architecture looks like,” Galinis told the breakfast. “Do we stay with a more traditional (gas-driven) system... or do we really make that transition to an integrated electric plant — and at some point, probably, bring in energy storage magazines...to support directed energy weapons and things like that?”

The admiral's referring here to anti-missile lasers, railguns, and other high-tech but electricity-hungry systems. Having field-tested a rather jury-rigged 30 kilowatt laseron the converted amphibious ship Ponce, the Navy's next step is a more permanent, properly integrated installation next year on an amphibious ship, LPD-27 Portland. (Subsequent LPDs won't have the laser under current plans). But Portland is part of the relatively roomy LPD-17 San Antonio class, which has plenty of space, weight capacity, power, and cooling capacity (SWAP-C) available, in large part because the Navy never installed a planned 16 Vertical Launch System (VLS) tubes in the bow. By contrast, while the Navy's studying how to fit a laser on the Arleigh Burkes, the space and electricity available are much tighter.

The DDG-1000 Digression

The larger DDG-1000 Zumwalt class does have integrated electric drive that's performing well in sea trials, Galinis said. (That said, the brand-new DDG-1001, Michael Monsoor, has had glitches with the harmonic filter that manages the power and, more recently, with its turbine engine blades). “We've learned a lot from DDG-1000” that the Navy's now applying both to its highest priority program, the Columbia-class nuclear missile submarine, and potentially to the future Large Surface Combatant as well.

In other ways, DDG-1000 is a dead end, too large and expensive for the Navy to afford in quantity. The Navy truncated the class to just three ships and restarted Arleigh Burke production, which it had halted on the assumption the Zumwalts would be built in bulk.

Today, the Zumwalt‘s very mission is in doubt. The ship was designed around a 155 mm gun with revolutionary rocket-boosted shells, but ammunition technology hasn't reached the ranges the Navy wanted for the original mission of bombarding targets ashore. With the resurgence of the Russian fleet and the rise of China's, the Navy now wants to turn the DDG-1000s into ship-killers, which requires even longer ranges because modern naval battle is a duel of missiles.

The gun's place in ship-to-ship combat is “probably not a significant role, at least not at the ranges we're interested in,” Galinis told reporters. While the Navy could invest in long-range cannon ammunition, he said, it's paused work on several potential shells it test-fired last summer, awaiting the final mission review. If the Zumwalts do move to the anti-ship mission, which Galinis said they would be well suited for with minor modifications, their guns will be less relevant than their 80 Advanced VLS missile tubes or future weapons such as railguns drawing on their prodigious electric power.

That power plant might evolve into the electric heart of the future Large Surface Combatant — or it might not.

“We're going to have the requirements discussion with Navy leadership and then we're going to want to engage industry as we start thinking about what options might be available,” Galinis said. “Frankly industry's probably best suited to try to help us with the technology piece, especially if we start thinking (that) we want an innovative electric plant.....We'd go to probably the big power electronics/power system vendors, who really work in that field and have the best information on where technology's going.”

https://breakingdefense.com/2018/07/destroyers-maxed-out-navy-looks-to-new-hulls-power-for-radars-lasers/

On the same subject

  • US Cyber Command developing own intelligence hub

    March 1, 2023 | International, C4ISR

    US Cyber Command developing own intelligence hub

    The center was previously teased by CYBERCOM’s director of intelligence, Brig. Gen. Matteo Martemucci.

  • Insights From Aerospace & Defense Leaders | Aviation Week Network

    June 21, 2021 | International, Aerospace

    Insights From Aerospace & Defense Leaders | Aviation Week Network

    As part of our Aerospace & Defense Community Forum, Aviation Week Network spoke with leaders across the Aerospace & Defense industry about their companies, the state of the industry currently and where it is headed in the future. See what they had to say. 

  • DARPA Awards Contracts for Autonomous ‘Sea Train’

    November 3, 2020 | International, Naval

    DARPA Awards Contracts for Autonomous ‘Sea Train’

    11/2/2020 By Connie Lee The Defense Advanced Research Projects Agency has awarded contracts for its Sea Train program, which seeks to enable autonomous vessels to perform long-range transit operations. In September, Applied Physical Sciences Corp., Gibbs & Cox Maritime Solutions and Mar Technologies were chosen for the program, which will include two 18-month phases. The contract awards' total potential values were $31.2 million, $30.4 million and $28.5 million, respectively. Through the effort, DARPA wants “to provide some operational flexibility for medium-sized unmanned surface vessels,” said Andrew Nuss, a program manager within the agency's tactical technology office. Each company is “developing a unique approach to be able to address the goals of the Sea Train program.” Unmanned surface vessels are generally limited in operational range, typically 3,500 to 4,000 nautical miles, he said in an interview. However, DARPA hopes to extend that to about 14,000 nautical miles under the Sea Train program. Usually unmanned surface vessels must undergo multiple refuelings to go farther distances, he noted. “It's sort of a vicious cycle at that point, where you're constantly chasing efficiencies and whatnot,” he said. However, a Sea Train platform — which is expected to be 40 meters long and carry a 35-ton payload — could give an operational commander “the flexibility to deploy these highly capable medium-sized unmanned surface vessels from many different locations without having to rely on ... refueling operations.” DARPA plans to extend the range of USVs more efficiently by creating a “train” in which four autonomous vessels are physically connected until they reach their destination. The platforms would then detach, conduct their individual operations and then reconnect before returning to their starting point, Nuss said. Unmanned boats must overcome resistance and friction from waves as they move, but attaching the platforms may help increase their efficiency and allow them to travel longer distances, he said. “By physically connecting multiple vessels together, and extending the length of that interconnected system, we could move — in our case — four vessels with ... approximately the same efficiency of a single vessel,” Nuss said. The medium-sized platforms were picked for proof of concept, but the idea could be applied to smaller vessels or manned systems as well, he noted. https://www.nationaldefensemagazine.org/articles/2020/11/2/darpa-awards-contracts-for-autonomous-sea-train

All news