Back to news

October 17, 2023 | International,

Defense Innovation Board to study innovation barriers, data economy

The deputy undersecretary of defense for research and engineering commissioned the Defense Innovation Board to complete the studies by February.

https://www.c4isrnet.com/battlefield-tech/2023/10/17/defense-innovation-board-to-study-innovation-barriers-data-economy/

On the same subject

  • Oshkosh unveils hybrid electric Joint Light Tactical Vehicle

    January 26, 2022 | International, Land

    Oshkosh unveils hybrid electric Joint Light Tactical Vehicle

    Oshkosh has developed a hybrid electric Joint Light Tactical Vehicle as militaries worldwide warm up to the concept.

  • Pentagon Report Shows China’s Continually Modernizing and Growing Military Capabilities

    September 7, 2018 | International, Aerospace, Naval, Land, C4ISR

    Pentagon Report Shows China’s Continually Modernizing and Growing Military Capabilities

    By Dean Cheng The Department of Defense has released the latest edition of its report on Chinese military and security developments. Mandated in the fiscal 2000 National Defense Authorization Act, the annual report is an important source of regular updates regarding China's growing military capabilities and its expanding range of security-related activities. Since the People's Republic of China halted the publication of its biennial defense white papers in 2015, there are few other good sources of information on one of the world's largest militaries. An important element of this year's report is the expanded discussion of China's security-related activities, providing a broader, fuller assessment. There is an extensive discussion of China's Belt and Road Initiative, its array of investment projects previously known as the “One Belt, One Road Initiative,” stretching from China to Europe, into the Indian Ocean to Africa, and even across the Pacific to South America. The report discusses the security implications of the Belt and Road Initiative, even though it is primarily a set of economic and political initiatives with limited direct military impact. Ad Feedback This more comprehensive analysis is important, as it captures the Chinese whole-of-society approach to national security. To understand Beijing's challenge to the U.S., it is vital to incorporate not only concerns about the People's Liberation Army and the Chinese government, but also consideration of its diplomatic and economic engagement globally. This year's report also exemplifies why issuing an annual report is important. It highlights the various changes that have been undertaken since the announcement in December 2015 of a series of fundamental overhauls and reforms of the People's Liberation Army. It thus provides a new snapshot of the various improvements and changes in the Chinese military as it continues to modernize all of its services. Much discussed, for example, has been the steady extension of the People's Liberation Army's reach. News reports emphasized that it is acquiring systems that will allow it to strike the United States. The report also notes that “one of the most significant [Navy] structural changes in 2017” has been the tripling of the size of the Chinese marine corps. Coupled with China's first official overseas military base (in Djibouti), it is clear that China is expanding its force-projection capacity. As important, however, have been the changes in the People's Liberation Army's organization and doctrine. This year's report devotes substantial discussion to the evolving organization of PLA Army forces, as well as changes in the Central Military Commission, which manages the overall military. These changes are fundamental, but have taken the past two years to become much more visible. The shift from divisions as the cornerstone of China's ground forces to brigades had long been discussed, but only now is there sufficient evidence to gauge Beijing's progress. The changes in the Central Military Commission structure have been even more complex. When the changes were first announced, the commission initially appeared to be expanding from four general departments to 15 departments, commissions, and offices. It is now clear, however, that in fact the commission has shrunk, with only seven members, rather than the pre-reform 10. Of particular note is the removal of the Logistics Work and Equipment Development departments from the main Central Military Commission structure. Full article: https://www.cnsnews.com/commentary/dean-cheng/pentagon-report-shows-chinas-continually-modernizing-and-growing-military

  • Are software-defined ground stations the next big leap? Kratos is betting on it.

    October 21, 2020 | International, C4ISR

    Are software-defined ground stations the next big leap? Kratos is betting on it.

    Nathan Strout WASHINGTON — Software-defined payloads have revolutionized how industry and the government approach satellites. So why not software-defined ground stations? That's the question Kratos is asking. On Oct. 20, the longtime Pentagon contractor with experience building satellite support systems unveiled its new OpenSpace platform — a family of virtual products that applies the software-defined approach to the ground station. OpenSpace uses an open standards, cloud-based system that can be continuously adjusted to mission needs without having to install new hardware. Pentagon officials often complain that the nation's current satellite ground architecture is stymied by stovepiped, custom-built proprietary ground systems. The department has said it plans to move to an enterprise ground system, but it's not there yet. Kratos hopes that OpenSpace can at least be part of the solution. Because the platform is software-based, satellite operators no longer need to use custom-built hardware to connect to and control their on-orbit systems. Instead, OpenSpace virtualizes the ground system in software, effectively allowing it to be linked up to any antenna with a digital converter. “It's a big announcement from our perspective in that it's going to address a lot of the key issues that are challenging the space industry across the board, and especially some of the issues that the defense and government world is going through,” Neil Oatley, Kratos' vice president for marketing, told C4ISRNET. Software-defined payloads have opened up new possibilities in the space industry. Previously, satellites were designed to be rather static tools — once placed in orbit, it becomes all but impossible to physically replace the payload hardware or refigure the software. That means that the system you launch is the system you've got, regardless of whether your mission needs change or you want to do something new with your orbital tech. The Defense Department is investing in capabilities that could eventually allow physical access to operational satellites via robotic space vehicles, but that's still in development. All that is just to say, when the military builds a satellite, it builds it with the expectation that the space-bound payload will be largely static over the lifetime of the spacecraft. In other words, it will do the mission it was meant to do, and not much else. “When you look at the ground today, it's the one area where we're really stuck back in 2G-type technology,” said Phil Carrai, president of Kratos' Space, Training and Cyber division. “Systems are stovepiped. They're static. They're built with custom hardware. They have software-specific technologies that are dedicated to specific satellites. And that's really making them unable to play in the coming new world.” Building a new, custom ground system for each new satellite or constellation is not only costly, but it limits flexibility. The satellite-specific nature of existing ground systems makes it difficult to build third-party applications that can easily be installed across systems. Moreover, it limits the ability of operators to simultaneously connect to multiple constellations using the same ground system. However, industry has created a workaround. Satellites may not be physically inaccessible, but they frequently communicate with operators over radio frequency signals. If a given payload's functions are largely virtualized — meaning they are software-defined and not hardware-defined — then operators can alter a given satellite's capabilities and mission by simply installing new software. Hence, the growing interest in building software-defined payloads. In fact, the next GPS payload will feature an entirely digital payload. With OpenSpace, Kratos is applying the basic principles of software-defined payloads to satellite ground systems — the technology used to command and control the spacecraft once it's on orbit. The ground system is what operators use to cue, download data from, and monitor their satellites. According to Kratos, its OpenSpace platform is the first dynamic, software-defined ground system that will apply those lessons learned from the space layer to the ground layer. “What we did with OpenSpace is we actually started from scratch with an entirely new platform that is based on the fundamentals of network function virtualization (NFV) and software-defined networking (SDN),” said Greg Quiggle, vice president of product management at Kratos, comparing the platform to the architecture underlying new 5G networks. “We took that same basic premise and we applied it to the way a ground system should be built to interconnect software-defined satellites, multi-constellation networks and a terrestrial network.” A key feature that enables OpenSpace is the digitization of the radio frequency signal as close to the antenna as possible, transforming that flow of data into what is effectively a large ethernet network. “Once you've done that — you move from [radio frequency] to digital — you now can process those subchannels, that bandwidth, in software through something called virtualized network functions,” Quiggle explained. The platform takes typical purpose-built ground station hardware — splitters, channelizers, matrix switches, modulators, demodulators and much more — and recreates them in a virtual environment. Once the radio frequency data is digitized, it can be processed through all of these virtual tools. One consequence of that is the software can be run anywhere — it does not have to be located at the antenna. Operators can run this solution in the cloud or in a classified data center, said Quiggle. That also means any ground station using OpenSpace can be quickly adjusted for different uses. For instance, take an operator who needs to interact with satellites. By using an OpenSource-enabled ground station, that individual can load his or her own software-defined solution into the system, connect with the satellite, download any data and cue the spacecraft for its next tasks. Once that satellite passes out of view, a second operator can take over the ground station, load an entirely different software-defined solution and interact with the satellite as it passes over. In this scenario, both users were able to use a single ground station to communicate with their own unique satellites. In another example, the first user is ready to use one ground station to interact with a satellite as it passes overhead, but inclement weather disrupts the process. Instead of waiting for the satellite to pass overhead again, the user simply needs to find the next available ground station on the satellite's course, virtually load software and then access the satellite from there. Military applications OpenSpace is clearly set to have commercial implications. In fact, Microsoft announced Oct. 20 that it will use OpenSpace as part of its Azure Orbital ground-station-as-a-service. Azure Orbital is Microsoft's answer to Amazon Web Services' Ground Station model, which allows customers to access their satellites by renting time on Amazon's ground stations and the AWS platform. It's a business model that could be attractive to small companies looking to field small satellites without building massive, cost-prohibitive ground systems to support them. But a product like OpenSpace could make an even bigger splash in the military space community, especially when it comes to satellite communications. In a statement released earlier this year, the Space Force laid out its concept of “fighting SATCOM.” The service envisions enabling war fighters to roam among satellite communications providers to ensure forces remain connected even if one provider is jammed or unavailable. That level of fluidity requires some major changes to how the military has traditionally approached satellite communications. “One of the things that the government is looking for very specifically is the ability to create an open enterprise-wide architecture for their protected communications systems,” said Frank Backes, senior vice president for federal space-related business at Kratos. “And as they move forward with proliferated LEO [low-Earth orbit] and MEO [medium-Earth orbit] constellations to add communication options, resiliency and capability to their current geosynchronous space communications environment ... this ground architecture is very critical to the defense goals and what they're trying to achieve,” he added. Currently, the ability to roam between constellations to avoid jamming is hampered by stovepiped systems, which are designed to work with a single satellite or a set of satellites. Because OpenSpace can leverage any radio frequency antenna, digitizes that signal and process that data in software, the operator can use the same ground station for multiple constellations. Kratos certainly hopes that its system could be the ground solution for the “fight SATCOM” concept. “Today, the U.S. government on the defense side is very dependent on their own antennas and their own hardware that is deployed for their communications infrastructure and their satellite command-and-control environment. And one of the reasons for that is the hardware that is out in the field today is protected hardware: It may have specialized waveforms, it may have specialized components, it may even have specialized encryption infrastructure,” Backes said. “That limits the military to only using certain apertures for communications. As soon as you move to this dynamic environment — this OpenSpace environment that Kratos is talking about — now you have the ability to use any commercial or military antenna infrastructure for your system and dynamically configure that as needed. “Combined with the ability to move protected hardware out of the field and putting that into a controlled cloud environment, now all of a sudden I have the ability to create the resilient environment that the Department of Defense is looking for.” Kratos told C4ISRNET in a statement that the company “is providing satellite ground system engineering support on several DoD pLEO space segment teams.” In addition, the company noted it “will be bidding our OpenSpace and [Eterprise Ground Services] capabilities on pLEO systems as those opportunities mature.” “When you look at ... the new LEO and MEO constellations — just from a pure imaging/sensing perspective — we don't see how you make those happen without an element of a dynamic software-defined ground,” Carrai said. “The timing has to be second or milliseconds. That we think is going to be essential for us to really get what we're paying for and we need from a U.S. constellation perspective.” https://www.c4isrnet.com/battlefield-tech/space/2020/10/20/are-software-defined-ground-stations-the-next-big-leap-kratos-is-betting-on-it/

All news