Back to news

April 8, 2020 | International, Aerospace, Naval, Land, C4ISR, Security

COVID-19: Help Fleets Of Innovators Make 3D Printed Face Masks

By JOHN QUIGG

Next month we'll celebrate the 80th anniversary of Operation Dynamo, better known as “the Miracle of Dunkirk.” In the course of three days, hundreds of British civilian boats crossed the Channel to save their Army from starvation and the advancing Germans.

Why? The Royal Navy did not have enough ships to transport the troops nor the right type of boats to operate in the shallows of the French coast. The key to the operation's success was governmental agility, masterful logistics, and realizing that the only solution to saving the entire force was a never-seen-before public/private partnership and lightning fast decision making (along with favorable weather and air cover).

Our first responders and medical heroes are trapped on a figurative beach as the crest of the COVID-19 epidemic looms with too few supplies, thus facing illness and possible death. Supply chains ravaged by years of creating just-in-time global networks are not up to this challenge. The “Little Ships” in our modern story to the rescue will be 3-D printers. The air cover will be shielding from tort lawyers, and the civilian volunteers the remarkable talents comprising the nation's maker community.

I confess that this is personal — my youngest brother is an EMT in suburban Atlanta. He tells me that his coworkers and emergency room staff are already down to handmade masks and are begging for supplies. The need is clear – top priority must be placed on vetting and publishing designs, finding out where the nation's supply chain can't satisfy projected demand, and the command and control required to match makers with the needs of the nation's first responders.

For example, the Seattle Children's hospital was running critically low on masks several weeks ago and was desperate for help. Enter Rory Larson, a talented CAD designer who spent two caffeine fueled days and nights designing and testing a printable version of an N-95 mask with replaceable filters which were enthusiastically embraced by the hospital staff. His father, Garr, connected him with Jonathan Roberts, a veteran of Microsoft and Innovation Partners. Roberts helped scale the availability of the design, enlisted production partners and reached out to people who could help them leap over the many administrative hurdles — and set up a website. Now anyone with a printer can download the design and print their own masks.

The military is already headed down this path. US Forces Korea tasked their science advisors from the Office of Naval Research and Army Futures Command to start an internal effort given the shortages of masks and other supplies in Asia. They designed, produced and disseminated a face shield for gate guards and are exploring the techniques for other medical shortfalls however the design and approval process is still problematic. One of their largest challenges is procedural – sharing military-manufactured equipment falls foul of all sorts of regulations and they will need process changes at a pace no earthly acquisition official could normally achieve. This problem is replicated across the defense enterprise as installations around the world wrestle with the red tape surrounding helping their neighbors and host countries.

To help, the Department of Defense Manufacturing Innovation Institute for additive manufacturing (www.AmericaMakes.us) initiated a fast track certification process to breach the monolith of government approvals. ONR Global's Mark Buffum tells me that they are working with ONR/USFK legal to check that the validation coordination between the FDA and AmericaMakes will allow designs that have passed Clinical Review to be moved to production at DOD installations globally. The end state for now is a tested design placed on the NIH's 3D design exchange that is approved for manufacture.

The government is working on the dispensations needed to take a mask printed on a Navy ship in Korea, an Army logistics train in Iraq, or an Air Force base in Colorado. Similarly, 3D makers near Active Duty/Reserve/National Guard installations should be integrated into their supply chain. If worst case scenarios come to pass and civilian logistics fail then we have an exercised plan to connect military supply and transport capabilities to the manufacturers and vice versa. Much as the Royal Navy executed the plan to flag and man the Little Ships during Dunkirk, we must figure out how the military can leverage local, regional, and national maker capabilities to get those printers humming.

A case in point is the Belgian chemical company Solvay, partnering with Boeing, to leverage its extensive expertise in thermoplastic materials—and especially medical-grade plastics—to support various efforts aimed at fighting the pandemic. Their support centers located around the world are ready to support material selection, manufacturing support, relevant testing and regulatory certifications. They are offering to put makers in touch with their extensive network of distributors, molders and machine shops.Additionally,

Boeing is working with Solvay to design/produce more durable face shields for healthcare workers. Boeing announced last week it would be shifting some of its manufacturing capacity, including its in-house 3D printing, to produce thousands of face shields per week for medical workers.

At the local level, community leaders like Todd Spain are talking to their local hospital to determine shortfalls, and are working with a regional maker group, Colorado Makers Unite (MakerUnite.co) to produce their own masks and ventilator adapters to protect the staff and enable equipment sharing. They are prepared to make anything their first responders need. One of the biggest roadblocks is the administrative state: the only readily available plastic is not approved for medical use, the approved plastic is on a 3-week wait list and costs 10X more, shipping of vital feed-stock and machines is not on the prioritized list, and the usual hurdles of liability, etc....

One can only imagine the potential legal hurdles to using something that hasn't been tested in countless lawsuits unless a company gets regulatory relief. A partnership with the local National Guard unit or military installation could bring their concerns to light and allow the Defense Department to take on the job of connecting the capability to the population and while providing emergency protection from the trial bar.

We must move heaven and earth to give the brave people trying to build an ad hoc network of 3-D mask makers our best and ensure that the “small ships” of the 3-D printing world and its makers are allowed to give it their best shot. I can only hope that history looks back at this time with wonder that we were able to pull it off.

John Quigg, a retired Army officer, was one of America's first cyber warriors. He is a senior advisor to Spurrier Capital Partners, a New York investment bank, and a senior staffer at Johns Hopkins' Applied Physics Lab.

https://breakingdefense.com/2020/04/covid-19-help-fleets-of-innovators-make-3d-printed-face-masks

On the same subject

  • Satellite Imagery + Social Media = A New Way to Spot Emerging Nuclear Threats

    July 31, 2018 | International, Aerospace

    Satellite Imagery + Social Media = A New Way to Spot Emerging Nuclear Threats

    BY PATRICK TUCKER A research team is training computers to find and fuse clues from wildly different rivers of digital data. Hiding illicit nuclear programs might be getting harder, thanks to new ways of gleaning and combining clues from various rivers of digital data. That's the conclusion of new research funded in part by the U.S. Energy Department's National Nuclear Security Administration. Satellites offer one kind of information; social media another — particularly inside countries that may be trying to flout inspections. But large volumes of satellite imagery and social media data aren't similar. You can have one analyst examine satellite pictures and another look at social media posts to see if they align, but the process is time-consuming and generally far from comprehensive. The study's authors developed a method for fusing different types of data in a machine-readable way to offer a much clearer picture. “In light of their ubiquitous emergence, social media increasingly promise to be of great value even though associated applications have thus far remained simple, and their fusion with other data has been largely ad hoc,” the team from North Carolina State University writes in “Fusing Heterogeneous Data: A Case for Remote Sensing and Social Media.” Only by creating a new statistical method for fusing the outputs of satellite data and social media data do you get something you can use to predict what might happen next within a given area of interest, such as a specific nation's nuclear enrichment or weapons development. The researchers looked at satellite and social media data from August 2013, when deadly floods killed eight people and caused widespread damage in Colorado. They sought to show that if you could algorithmically identify which imagery showed the flooding from space, and which geotagged tweets described it on the ground, you could could much more quickly verify one data set against another — that is, you could determine whether incoming social media data supports the conclusions you might be reaching from your satellite data, and vice versa. “Next steps for the project include evaluating nuclear facilities in the West to identify common characteristics that may also be applicable to facilities in more isolated societies, such as North Korea,” notes a press release on the paper. One of the authors, NCSU computer and electrical engineering professor Hamid Krim, said the team would try to “address the insufficient knowledge in general in areas of great interest (e.g. N. Korea and Iran). The goal is to come up with systematic methodologies to transport knowledge about nuclear environments available in other areas (e.g., in the West) to these domains where there is very little available. Creating such an environment in these places of interest will help them detect potential undesired activity.” Of course, there are limitations to media monitoring in Iran and North Korea. The former's social media environment is largely underground, thanks to bans on Twitter and many other social networks. The latter has virtually no social media environment at all. Krim noted that the “adversarial strategy” of social-media censorship makes his team's analysis harder. But even social posts from nearby countries can help illuminate their more secretive neighbors, he said — think tweets from Japan after earth tremors are felt. https://www.defenseone.com/technology/2018/07/satellite-imagery-social-media-new-way-spot-emerging-nuclear-threats/150146/

  • Malicious PyPI Package Targets macOS to Steal Google Cloud Credentials

    July 28, 2024 | International, C4ISR, Security

    Malicious PyPI Package Targets macOS to Steal Google Cloud Credentials

    Discover how a malicious PyPI package targets macOS users' Google Cloud credentials. Learn about the sophisticated attack and its implications.

  • Hungary plunks down $1 billion for new air defenses

    August 14, 2020 | International, Aerospace

    Hungary plunks down $1 billion for new air defenses

    By: Sebastian Sprenger COLOGNE, Germany – The Hungarian and U.S. governments have announced a $1 billion deal to equip the European country with new air-defense weaponry. The sale includes the Raytheon-made Advanced Medium-Range Air-to-Air Missile-Extended Range missile, of which Hungary requested some 60 copies in May through the U.S. Foreign Military Sales program. According to the Defense Security Cooperation Agency, that portion of the deal is worth $230 million. Another transaction type, called a Direct Commercial Sale, accounts for the rest of the money, according to a statement posted on the website of the U.S. Embassy in Budapest. Such sales are negotiated privately between customer countries and American defense contractors, meaning the U.S. government has little involvement besides approving an export license. Exactly what the DCS portion of the deal entails is unclear, though the embassy statement and Hungarian media note that all the equipment would go toward replacing the country's Soviet-era gear with the NASAMS short- and medium-range air-defense system made by Norway's Kongsberg. Raytheon's AMRAAM-ER missiles are the interceptors in that configuration. U.S. Ambassador David Cornstein, a New York businessman and admirer of Hungarian Prime Minister Victor Orban's policies, and Hungarian Defense Minister Tibor Benkő lauded the weapons deal Wednesday. “We commend the Hungarian government's strong commitment to continue modernizing Hungary's military through the acquisition of the world's most advanced mid-range air defense system, which will enhance Hungary's ability to provide collective and self-defense,” the statement reads. EU member Hungary, with its far-right government, is under pressure from other members of the bloc for what they say is a steady slide toward anti-democratic rule. The country has been on a military spending spree lately, with Germany's Krauss-Maffei Wegmann in line to supply dozens of Leopard-2 tanks. https://www.defensenews.com/global/europe/2020/08/13/hungary-plunks-down-1-billion-for-new-air-defenses

All news