Back to news

September 13, 2021 | International, Aerospace, Naval, Land, C4ISR, Security

Contracts for September 10, 2021

On the same subject

  • US Army floats the option of fielding high-altitude balloons

    November 10, 2020 | International, Aerospace

    US Army floats the option of fielding high-altitude balloons

    By: Jen Judson WASHINGTON — The U.S. Army is now carving out a path to field high-altitude balloons to provide an additional but less expensive layer of communications, connectivity, range extension and surveillance capabilities, adding resiliency to the service's existing architecture of space assets and aircraft supporting multidomain operations. Recent tests and experiments with high-altitude balloons at White Sands Missile Range, New Mexico, left an impression on the head of the Army's Space and Missile Defense Command. “It's just phenomenal what we're able to do with high-altitude balloons,” Lt. Gen. Daniel Karbler told Defense News in an interview ahead of the Association of the U.S. Army's annual conference, which took place virtually Oct. 13-16. “I don't have the cost analysis but, in my mind, pennies on the dollar with respect to doing it. If I had to do it via a [low-Earth orbit] or some satellite constellation, what we are able to provide with high-altitude balloons, it's tactically responsive support to the war fighter,” he added. Karbler said he sees the balloons supporting the Army's Multidomain Task Force in the future. “Conceptually, with the types of missions that the Multidomain Task Force is working, the high-altitude balloons would be a key capability enabler,” Brent Fraser, concept development division chief at SMDC's Space and Missile Defense Center of Excellence, told Defense News in an Oct. 29 interview. “[The balloons would] be able to provide some beyond-line-of-sight capability, whether it's communications, extended distances, to be able to provide the ability to enable sensing of targets deep in the adversary's areas, to be able to reinforce and complement existing sensing systems other than the aerial layer as well as the space layer,” Fraser added. In terms of war games and experiments conducted with high-altitude balloons, “as we look at a number of emerging concepts and capabilities and formations,” he explained, “I think we still have a ways to go, but I think we're on a positive path to continue.” SMDC has been working on high-altitude balloons — basically dirigibles that can camp out roughly 60,000-90,000 feet in the air — for a long time, but recently the technology has improved, particularly through the commercial market. Google, for instance, used high-altitude balloons to help Puerto Rico after Hurricane Maria to help establish internet connectivity. Duration is one of the areas that has greatly improved. High-altitude balloons can now stay aloft for weeks, if not months, rather than just hours or days. Users can also command and navigate the balloons better than before, and the platforms can more easily be recovered after missions. “The technology readiness levels have really come a long way,” Fraser said. SMDC has partnered with Army Futures Command to advance the technology, particularly involving the latter's Assured-Positioning, Navigation and Timing cross-functional Team as well as Training and Doctrine Command, the Army Intelligence Center, and cyber and special operations personnel. Several years ago, the Army developed a high-altitude concept that established a foundation on which to build, Col. Tim Dalton, Army capability manager for space and high altitude within the SMDC's center of excellence, said in the same interview. After integrating the concept into a variety of war games with Futures Command and other entities, the Army is starting to develop requirements. “We're in the initial stages of defining what those requirements would be,” Dalton said. “There's kind of two aspects to the high-altitude piece: the high-altitude platform, so it's the balloon, and then whatever it's carrying on there for a payload.” The Army has created initial documents for staffing through Futures Command, and over the next couple of years the service will run those requirements through the Joint Capabilities and Integration and Development System process, which will lead to review by the Army Requirements Oversight Council. The service is in the early stages of figuring out what a program of record would look like, but it has some options, Dalton said. “What we're kind of hoping to do over the next couple of years as part of our campaign of learning is to help define what that looks like and the best way to resource those requirements for the Army.” https://www.defensenews.com/digital-show-dailies/ausa/2020/11/09/us-army-floats-the-option-of-fielding-high-altitude-balloons/

  • The US Air Force Is Adding Algorithms to Predict When Planes Will Break

    May 16, 2018 | International, Aerospace

    The US Air Force Is Adding Algorithms to Predict When Planes Will Break

    The airlines already use predictive maintenance technology. Now the service's materiel chief says it's a “must-do for us.” The U.S. Air Force has started to use algorithms to predict when its aircraft will break, part of an effort to minimize the time and money they consume in the repair shop. The use of predictive analytics has been blazed by airlines, which monitor their fleets' parts in an effort to replace broken components just before — and crucially, not after — they break. “I believe it is a must-do for us,” said Gen. Ellen Pawlikowski, the head of Air Force Materiel Command, the arm of the Air Force that oversees the maintenance of its planes. She spoke Tuesday at a Defense Writers Group breakfast in Washington. “We see this as a huge benefit.” If the Air Force could reduce the risk of unexpected breakage — and the attendant need to fly replacement parts and repair crews around the globe — it could reduce costs and boost mission effectiveness. It could also increase the usefulness of the current fleet by reducing the number of aircraft that need to be be held in reserve as backups. It starts with gathering data, such as the temperature of engine parts or the stresses on the airframe. “We are trying to leverage what we already get off of airplanes, as opposed to trying to go in and put instruments in places,” Pawlikowski said. “It turns out there's quite a bit that's there, but it may not be a direct measurement. In order to measure the temperature in this one particular spot, I'm getting information somewhere else.” Artificial intelligence and machine learning can then determine patterns. The general said the Air Force has been learning a lot from Delta, the world's second-largest commercial airline. “Delta has demonstrated the effectiveness of predictive maintenance in dramatically reducing the number of delays to flights due to maintenance,” she said. Over the past three years, Air Mobility Command — the arm of the Air Force that oversees all of its large cargo planes and aerial refueling tankers — has been organizing the data it collects on some of its planes. It has started using the predictive maintenance technology on its massive C-5 airlifters. The Air Force is also using the technology on the B-1 bomber. “The B-1 is an airplane that we actually bought with a whole bunch of data that we weren't using,” Pawlikowski said. “We started to take that data in and start to analyze it....We're very excited about this because we see huge potential to improve aircraft availability and drive down the cost.” She said she “was impressed when I saw some of the data that they were showing me.” The Air Force Lifecycle Management Center, which reports to Pawlikowski, has been funding these trials “by finding the loose change in the seat cushions,” she said. “As we have now shown some things ... we're seeing more and more interest in it and we're looking at increasing the investment in that to bring it further,” Pawlikowski said of the predictive maintenance. Last September, Gen. Carlton “Dewey” Everhart, head of Air Mobility Command, stressed his desire to use predictive maintenance, but warned it would cost money to get the datafrom the companies that make the planes. “In some cases, we'll be working this collaboratively with our industry partners,” Pawlikowski said Tuesday. “In other cases, we'll be doing it completely organically.” Air Mobility Command is also using predictive maintenance technology on the C-130J airlifter. The latest version of the venerable Lockheed Martin cargo plane — the J model — collects reams of data as it flies. In April, the Lockheed announced it was teaming with analytics firm SAS to crunch that data. “Everything we've been doing up to a certain point has been looking in the rear-view mirror with the data,” said Lockheed's Duane Szalwinski, a senior manager with his company's sustainment organization who specializes in analytics. “We're going to be able to look forward.” Lockheed is working on a six-month demonstration for Air Mobility Command; officials hope to be able to predict when certain parts will break before a flight. “If we're able to do that, it kind of changes the game in how you maintain and operate a fleet,” Szalwinski said. The data will give military planners a wealth of information about their aircraft that could help determine the best aircraft to deploy. “All those things you now know you have insights as to what you will need at the next flight, so you act accordingly,” he said. “Once we prove that we understand the probability of failure of these parts ... all things then become possible,” Szalwinski said. “Now it's not a matter of if, it's a matter of when. And if you know when, you can start acting accordingly. It would be a gamechanger in the way you manage a fleet.” Lockheed also wants to use the predictive maintenance tech on the F-35 Joint Strike Fighter. “The beauty of this is that the toolsets that we're developing, the models, how we clean the data, how we build the models, how we build the algorithms, all of that is not unique to a platform,” Szalwinski said. Still, instituting predictive maintenance practices fleet-wide is not going to happen overnight, particularly as since it will take time to understand the data, Pawlikowski said. Using this technology will require a cultural shift among maintenance crews because they'll be replacing parts before they actually fail, Pawlikowski said. “One of the big benefits is the reduction in the amount of time the airmen on the flightline spends troubleshooting a broken part” because “we will take them off before they break,” she said. https://www.defenseone.com/business/2018/05/us-air-force-adding-algorithms-predict-when-planes-will-break/148234/

  • EU to mull measures against Iran over possible missile transfers to Russia - draft
All news