Back to news

May 25, 2021 | International, Aerospace, Naval, Land, C4ISR, Security

Contracts for May 24, 2021

On the same subject

  • A Senate panel wants to spend an extra $400 million on microelectronics

    June 29, 2018 | International, C4ISR

    A Senate panel wants to spend an extra $400 million on microelectronics

    By: Daniel Cebul When the Senate Appropriations subcommittee on defense released a summary of their spending priorities June 26, the bill included a significant increase for one emerging technology. The panel recommended setting aside an additional $447 million for microelectronics. Specifically, the committee wanted to ensure the Department of Defense has access to trusted microelectronics and can develop manufacturing processes for next-generation microprocessor chips. To do so, the bill raised the fiscal year 2019 research, development, testing and evaluation budget for microelectronic technology from $169 million in the president's fiscal year 2019 budget request to $616 million. Already, concern about the domestic production of microelectronics is expected to be part of a large defense industrial base review now underway. But what exactly are microelectronics, and why is their development worth so much to DoD? Microelectronic chips are essentially integrated electric circuits that regulate energy consumption, and perform complex computations that enable capabilities like global positioning systems, radar and command and control. Imagine all of the components that go into your computer ― memory, graphics processors, wifi modules, etc ― all on a single silicon chip, called a wafer. eading-edge wafers typically are 300 mm in diameter and loaded with transistors, resistors, insulators and conductors that control the flow of electrons (read electrical energy) across the chip. The smaller and smaller these components are, specifically transistors, the more can be fit on a chip, enabling faster and more efficient processing. Transistors themselves are measured in nanometers (nm), and are unfathomably small to most non-scientists and engineers. One nanometer equates to a billionth of meter! To put that into perspective, the average diameter of a human hair is 75,000 nm. The most cutting-edge transistors used in microelectronics measure between 10 and 7 nm, and are expected to get smaller in coming years. Smaller and smaller transistors will contribute to breakthroughs in “machine learning, data sorting for recognition of events, and countering electromagnetic threats,” according to a Defense Advance Research Project Agency backgrounder. Because Pentagon leaders believe this technology is vital for current and future capabilities, technology officials say it is important DoD can trust microelectronics are reliable and secure from adversary attacks and sabotage. For this reason, DARPA launched the five-year, up to $200 million Electronics Resurgence Initiative in September 2017 “to nurture research in advanced new materials, circuit design tools, and system architectures.” A key thrust of this initiative is partnership with top universities through the Joint University Microelectronics Program, or JUMP. The program enlists top researchers to work on proejcts like cognitive computing, secure cellular infrastructure to support autonomous vehicles and intelligent highways and other technologies enabled by microelectronics. Under the Senate defense subcommittee's markup, ERI received an additional $30 million to help “reestablish U.S. primacy in assured microelectronics technology.” https://www.c4isrnet.com/it-networks/2018/06/28/a-senate-panel-wants-to-spend-an-extra-400-million-on-microelectronics/

  • UAE and Israeli firms to collaborate on counter-drone system

    March 15, 2021 | International, Aerospace, Security

    UAE and Israeli firms to collaborate on counter-drone system

    The bilateral cooperation comes in the wake of the Abraham Accords signed Sept. 15 between the United Arab Emirates and Israel, highlighting a new era of diplomatic relations and potential defense agreements between the two countries.

  • Secrets of Tempest’s ground-breaking radar revealed

    January 18, 2021 | International, Aerospace, C4ISR

    Secrets of Tempest’s ground-breaking radar revealed

    Tom Kington ROME — Radar engineers on the Tempest fighter program have said they expect to break data-processing records. The secret, they explain, is all about miniaturization and going digital. The sixth-generation jet — planned by the U.K., Sweden and Italy and set to enter service after 2030 — will bristle with new technology, from its weaponry and propulsion to a virtual cockpit projected inside the pilot's helmet. But the group set the bar high in October by announcing the fighter's radar would process a quantity of data equivalent to nine hours of high-definition video — or the internet traffic of a medium-sized city — every second. Few details were given to back up the claim, but now U.K.-based engineers with Italian firm Leonardo, who are working on the radar, have shared clues with Defense News. Boosting performance will mean rethinking today's electronically scanned radars, which have grids of small Transmit Receive Modules, or TRM, on the antenna, each generating an individual radar beam which can follow different targets or combine with others to create a larger beam. The TRMs in the array are formed into groups, and the signals received by each group are fed to a receiver which digitalizes the data before passing it to the radar's processor. Due to their size, the receivers must be positioned back from the aircraft's nose and accept the incoming analogue radar signal down coaxial cables, which incurs some data loss before the signal is digitalized. To remedy that, Leonardo is working on miniaturizing the receivers so they can be moved up into the nose and integrated within the antenna, cutting out the need for a coaxial cable. The data emerging from the receiver must still travel to the processor, but by now it is digital and can flow down fiber-optic cables, reducing data loss. “Miniaturized receivers can digitalize the signal within the antenna much earlier in the receive chain,” said chief engineer Tim Bungey. That's one step up from the new state-of-the-art European Common Radar System Mark 2 radar that BAE Systems and Leonardo have signed to deliver for RAF Eurofighters, which will use coaxial cables. “Digitalizing the data closer to the array means more data can be received and transmitted, the data can be more flexibly manipulated, and there is more potential for using the radar as a multi-function sensor such as for data linking and for electronic warfare,” said Bungey. There is also a second advantage to miniaturized receivers: Many more can be installed, meaning each one handles fewer TRMs. “To improve performance and flexibility within the system, a key challenge is to divide the TRMs into more groups containing fewer TRMs, handled by more receivers,” said Bungey. “By achieving that, together with supporting wider bandwidths, you can generate significantly more data, giving greater flexibility for beam steering and multi-function operation,” he added. “We are aiming to increase the number of groups of TRMs, and therefore the number of receivers, beyond what will be offered by the MK2 radar for Eurofighter,” he added. While the radar may push the envelope, Duncan McCrory, Leonardo's Tempest chief engineer, said it would be a mistake to consider it as a stand-alone component. “The MRFS will be integrated within the wider Tempest Mission System, which incorporates a full suite of electronic-warfare and defensive-aids capabilities, EO/IR targeting and situational awareness systems, and a comprehensive communications system.” he said. “The data captured by these systems will be fused to create a rich situational awareness picture for the aircrew,” he added. “This information will also be fused with data received from other aircraft and unmanned systems, with machine learning used to combine and process the overall situational awareness picture for the aircrew. This avoids information overload in the cockpit, enabling the aircrew to quickly absorb data and make decisions based on suitably processed and validated information, and rapidly respond to threats in highly contested environments,” he said. McCrory added that Leonardo demonstrated aspects of human-machine teaming recently in a trial organized with the British Army and the MoD's Defence Science and Technology Laboratory, in which a Wildcat helicopter crew tasked a semi-autonomous UAV provided by Callen-Lenz to gather imagery and feed it back to the cockpit display via datalink. “It is these human-machine teaming principles that we will be building upon for Tempest,” he said. “The MRFS will be integrated within the wider Tempest Mission System, which incorporates a full suite of electronic-warfare and defensive-aids capabilities, EO/IR targeting and situational awareness systems, and a comprehensive communications system.” he said. “The data captured by these systems will be fused to create a rich situational awareness picture for the aircrew,” he added. “This information will also be fused with data received from other aircraft and unmanned systems, with machine learning used to combine and process the overall situational awareness picture for the aircrew. This avoids information overload in the cockpit, enabling the aircrew to quickly absorb data and make decisions based on suitably processed and validated information, and rapidly respond to threats in highly contested environments,” he said. McCrory added that Leonardo demonstrated aspects of human-machine teaming recently in a trial organized with the British Army and the MoD's Defence Science and Technology Laboratory, in which a Wildcat helicopter crew tasked a semi-autonomous UAV provided by Callen-Lenz to gather imagery and feed it back to the cockpit display via datalink. “It is these human-machine teaming principles that we will be building upon for Tempest,” he said. As Tempest development proceeds, McCrory said design of the integrated mission system was proceeding in parallel with the design of the aircraft itself. “We are effectively designing the aircraft from the inside out; by this I mean we are working closely with the MoD to understand future sensing, communications and effects capability requirements, and then working with the Team Tempest partners to ensure the aircraft can accommodate and support the required avionic systems.” Leonardo is working with BAE Systems to ensure the airframe will accommodate sensors, with Rolls Royce to ensure there is sufficient powering and cooling for the systems, and with MBDA, said McCrory, “to give weapons the best available data prior to launch, and to keep them informed after they are released and receive data back from them as they progress towards the target.” https://www.c4isrnet.com/home/2021/01/15/secrets-of-tempests-ground-breaking-radar-revealed/

All news