Back to news

August 6, 2020 | Local, Land

Canadian Army's first ACSV to roll off production line in December

by Ashley Roque

General Dynamics Land Systems-Canada (GDLS-C) has begun producing its first Armoured Combat Support Vehicle (ACSV) for the Canadian Army, and is expected to complete the vehicle by the end of the year.

The army is replacing its current M113 Tracked Light Armoured Vehicle (TLAV) and LAV II Bison fleets with the new vehicle line, and the Department of National Defence announced on 4 August that the first ACSV will roll off the production line in December. The military will then conduct testing and training activities before it begins to field the vehicle to troops in 2022. If all goes as planned, the company will continue producing and delivering the new vehicles to the service through February 2025.

“These vehicles will form the backbone of the army's combat support fleet and be used on a wide range of operations including domestic disaster relief and international peace support missions,” Minister of National Defence Harjit Sajjan said in the announcement.

In September 2019 GDLS-C secured the CAD2 billion (USD1.5 billion) contract to produce 360 ACSVs, along with initial spare parts, technical manuals, and training. Under the deal the company will produce eight ACSV variants that will provide services such as ambulances, vehicle recovery, engineering, mobile repair, electronic warfare, troop carrying, and command posts.

https://www.janes.com/defence-news/news-detail/canadian-armys-first-acsv-to-roll-off-production-line-in-december

On the same subject

  • The Future Canadian Surface Combatant

    November 5, 2020 | Local, Naval

    The Future Canadian Surface Combatant

    By Captain Christopher Nucci, Royal Canadian Navy November 2020 Proceedings Vol. 146/11/1,413 Canada is pursuing a single class of 15 surface combatants for the Royal Canadian Navy (RCN), unlike some of its allies who are building multiple classes of more specialized ships. A single variant Canadian Surface Combatant (CSC) is better than the project's original vision of two variants based on a common hull (the first a task group command/air-defense version, the other a more general-purpose/antisubmarine warfare version). While all naval force structure is essentially driven by national strategic defense and security interests, a single-class solution is based on three principal factors. First, it fits best for Canada's unique naval requirements shaped by its geography, modest fleet size, and the RCN's operational needs. Second, it optimizes effectiveness now and into the future, while responsibly seeking maximum cost efficiencies. Finally, it is an innovative approach that has only recently become both practical and advantageous because of recent technological developments, such as convergence and digitization. The General Purpose Warship Moment Naval force planning decisions must coexist in harmony with decisions regarding a navy's overall fleet mix of capital ships, “high-end” surface combatants, “low-end” combatants, and submarines—and the roles of each type.1 In particular, surface combatants have historically fulfilled one or two warfare roles, such as antiair and antisubmarine warfare. Until recently, fielding an affordable “general purpose warship” was too difficult to achieve. The technological limitations of the latter half of the 20th century and into the first decade of the 21st imposed inescapable constraints stemming from the necessary physical size and power requirements of electronics and equipment, along with the expensive and challenging integration of the various single-purpose weapons, sensors, communications, and command-and-control arrangements (as well as the operations and maintenance personnel) required for each role. These limitations could only be surmounted by increasing space, weight, crew size, and the commensurate complexity. As a result, many navies introduced multiple classes of surface combatants to handle the different warfare roles, as well as low-end ships (at less cost) to have sufficient numbers of ships available to respond to contingencies. For the RCN, with a small force of submarines and no capital ships, the approach until now followed this pattern, with the Iroquois-class destroyers focused until their divestment on task group command and area air defense and the more numerous Halifax-class frigates acting as more general-purpose/antisubmarine warfare platforms. Canada's allies have had to confront similar considerations. For example, in the United Kingdom, the number of hulls and capabilities of the Type 26 (the CSC's parent design, known as the Global Combat Ship) are directly connected to the planned acquisition of less-capable Type 31 frigates, the existence of Type 45 antiair-warfare destroyers, a larger submarine fleet, and the importance of capital ships, such as Royal Navy aircraft carriers. For Australia (which is also acquiring the Type 26/GCS-derived Hunter-class), the requirement to protect amphibious ships, more submarines in the fleet, and a separate class of air-warfare destroyers are key factors. Different requirements ultimately lead to different priorities and trade-off decisions, and Canada's circumstances are unlike any others. Canada's Geography, Fleet Size, and Operational Requirements Aside from the overall fleet mix, the other considerations for any state's naval force structure are the geographic factors, overall fleet size, and operational requirements. In Canada's case, unique geography includes the bicoastal nature of the RCN's homeports in Victoria, British Columbia, and Halifax, Nova Scotia, and the tricoastal areas of responsibility in the Pacific, Arctic, and Atlantic. Each area is very distant from the others, and therefore any timely maritime response generally must come from the closest base. In other words, when you need a ship from the opposite coast for any unexpected reason, it is a long way to go. So, it is best if all ships are equally capable and allocated more or less evenly among homeports. Similarly, the RCN must consider the long-range nature of its ship deployments—even domestic ones—because of the significant distances to anticipated theaters of operation. A single combatant class that can perform a wide range of tasks while remaining deployed best meets this challenge and provides more options to government when far away from homeport. For example, a CSC operating in the Asia-Pacific region as an air-defense platform for an allied amphibious task group can quickly respond to a requirement to hunt an adversary's submarine, if needed. Similarly, assembling a national naval task group of several multirole CSCs in response to a crisis is much more achievable when the RCN can draw from the whole surface combatant fleet to assign ships at the necessary readiness levels. The alternative may not guarantee a sufficient number of specialized variants needed for the task when the call comes. In other words, if any one ship becomes unavailable to perform a task for any reason, there is more depth available in the fleet to fill the gap and complete the mission. Consequently, having more ships of similar capabilities ensures a higher rate of operational availability, which is especially important with the RCN's relatively modest fleet size. For small fleets, a “high/low” mix of warships or multiple classes of more specialized combatants actually constrains operational availability. Cost-Saving Value While increasing complexity would ordinarily imply increasing cost, a single class of ships can actually present opportunities to increase cost efficiency. First, a single class of ships eliminates duplication of fixed program costs such as design and engineering and, during ship construction, further eliminates additional costs derived from retooling and pausing work in the shipyard between the construction of different classes, while achieving better learning curves and lowering overall costs per unit compared with two shorter construction runs. As each ship enters service, a single ship class in sufficient numbers has dedicated supply chains and more efficiency and equipment availability from the provision of common parts (especially given that two allies are procuring additional ships based on the common Type 26/GCS design.) Higher cost efficiencies in maintenance from labor specialization also can be expected, as well as the ability for more efficient repair training and use of required ship repair facilities and equipment. Furthermore, training costs associated with a single class are reduced through the ability to deliver common training modules to a larger student cohort, while simultaneously allowing for deeper knowledge and specialist personnel development among a larger pool of available crew with common qualifications. This latter point cannot be overstated—crew availability is a key requirement for operational availability, and the efficiencies made possible with a single set of common qualifications and training enables a larger pool of available personnel to deploy and more flexibility for sustained operations at the unit level. It includes Royal Canadian Air Force maritime helicopter crews and embarked unmanned systems specialists, as well as Army, special operations forces, and even Royal Canadian Mounted Police personnel in a law enforcement mission who would require no additional conversion training between classes once familiar with the CSC's modular mission bay arrangement or boat launching procedures. An Opportunity Enabled by Modern Technology Compared with a few decades ago, several recent technological developments are making multirole ships much more practical. Information-age innovation is, in essence, enabling all the potential advantages a single class of surface combatants while minimizing the traditional disadvantages. For example, any operations room or bridge display can now easily show video or data feeds from any sensor, weapon, or software support system—convergence. Likewise, instead of several stand-alone unmanned systems controllers, consoles that can control any of the ship's unmanned air, surface, or subsurface system are becoming available. Widespread digitization has reduced space requirements, while increasing system capability, flexibility, and power and cooling efficiency. This miniaturization allows for smaller components that can fit into smaller spaces. Multifunctionality can now be found in all kinds of components. For example, a single digital beam-forming radar can replace multiple traditional radars, software-defined radios can support different communications requirements on the fly, programmable multipurpose weapons can engage more than one kind of target but be fired from a common vertical launcher, and decoy launchers can now deploy a variety of defensive munitions. Multifunctionality even extends beyond individual systems to encompass features like the CSC's modular mission bay—a reconfigurable space able to accommodate and integrate any containerized payload imaginable. With an air-transportable, container-based set of payloads, embarking additional specialized equipment or capabilities into a deployed ship during an overseas port visit can be done in just a few days. These developments enable a single ship to rapidly transition to and execute many naval roles while defending itself against a myriad of threats. Although a ship's overall capacity (e.g., the desired number of crew accommodated, missiles embarked, unmanned systems carried, endurance and seakeeping performance, etc.) will still be constrained by its size, a single ship class can have a full range of capabilities. The CSC balances multirole capabilities with a modest amount of capacity. For example, it has one main gun and 32 vertical-launch cells, one helicopter, one mission bay, one multifunction radar, and the ability to embark approximately 204 personnel for crew and mission personnel. Further technological development and additional advantages will accrue from operating a single ship class, such as those from software development and data analytics. For example, the analysis of detailed technical data, such as system-error codes, from across the entire class in near-real time enables the efficient updating of control software to improve cyber security. Or, consider the ability to perform virtual research and development work on a digital twin of a physical system, such as a gas turbine, to examine performance limitations without risking the equipment itself. Data analytics performed on the same system when a part fails can help determine which sensors are critical and what patterns are early indicators of impending failure. This will allow the crew to perform preventive maintenance before the system fails catastrophically and should prevent failures in the other ships of the class. In a connected world, it is even possible to rapidly and remotely inject operational capability enhancements to deployed ships. Ultimately, the relative ease with which the software elements of a combat system can be changed will allow ships of the same class a greater capability to act and react with agility, the most efficient way to maximize potential for a relatively small fleet. Acknowledging the unique Canadian geographical and operational requirements, the imposed limitations on naval force structure, and the need to maximize the RCN's effectiveness while seeking cost efficiencies calls for a single class of surface combatant—the current CSC project. Canada will benefit from this innovative solution for decades. The RCN is well-positioned to make the most of this new platform and the inherent flexibility and multirole capabilities it will bring. The Canadian government's decision to move forward with the CSC program as a single surface combatant class is not only eminently feasible, but also the most sensible for the situation we face. https://www.usni.org/magazines/proceedings/2020/november/future-canadian-surface-combatant

  • Funding to develop inclusive respirator for RCMP / Financement pour le développement d'un appareil de protection respiratoire inclusive pour la GRC

    April 29, 2021 | Local, Security

    Funding to develop inclusive respirator for RCMP / Financement pour le développement d'un appareil de protection respiratoire inclusive pour la GRC

    New Funding Opportunity The Royal Canadian Mounted Police (RCMP) is seeking the design and production of an inclusive respiratory protection option that can be safely used by front-line police officers who have facial hair for religious, cultural, medical and/or gender identity reasons. Think you can solve the Inclusive Respirator challenge? Compete for funding to prove your feasibility and develop a solution! This challenge closes on June 9th, 2021. Apply online Nouvelle opportunité de financement La Gendarmerie royale du Canada (GRC) cherche à concevoir et à produire une option de protection respiratoire inclusive pouvant être utilisée en toute sécurité par les policiers de première ligne qui ont une pilosité faciale pour des raisons religieuses, culturelles, médicales et/ou d'identité de genre. Vous pensez pouvoir relever le défi du Respirateur Inclusif ? Compétitionnez afin de prouver la faisabilité de votre solution et de la développer ! Ce défi se termine le 9 juin, 2021. Postulez en ligne

  • Contracts awarded to enhance tracking and detecting capabilities of Halifax-class frigates

    February 4, 2019 | Local, Naval

    Contracts awarded to enhance tracking and detecting capabilities of Halifax-class frigates

    February 1st, 2019 –– Halifax (N.-S.) –– National Defence / Canadian Armed Forces As outlined in Canada's defence policy, Strong, Secure, Engaged, the Government of Canada is providing the Royal Canadian Navy with enhanced naval intelligence, surveillance and reconnaissance systems. Today, on behalf of Defence Minister Harjit S. Sajjan, the Honourable Bernadette Jordan, Minister of Rural Economic Development, announced the award of two contracts valued at $186 million to General Dynamics Mission Systems-Canada to upgrade and maintain underwater sensors installed in the modernized Halifax-class frigates. The majority of this work will occur in Canada, creating and maintaining about 120 highly skilled jobs while supporting the continued growth and competitive advantage of the underwater sensor industrial capabilities in Canada. As a result of this investment, the Halifax-class frigates will be able to detect quieter targets at increased ranges. In addition, improved automation will allow sonar operators to improve their underwater warfare performance work and to focus on other priorities. This will make our frigates more effective in both coastal regions and the open-ocean. The Halifax-class multi-role frigates will remain the key contributor to naval operations for the next 20 years. The contracts announced today will increase the frigates' overall ability to deal with emerging and future threats, and ensure that the women and men of our Royal Canadian Navy have what they need to do the important job we ask of them. Quotes “Through our defence policy, Strong, Secure, Engaged, we are investing in the women and men of our Royal Canadian Navy and making sure they are well equipped to address emerging threats. Threat detection is critical to initiate rapid defence countermeasures that protect our sailors and our ships. As the security environment continues to evolve, we will continue to adapt our naval capabilities, enabling effective defence of Canadian waters and meaningful contribution to international operations and exercises.” Harjit S. Sajjan, Minister of National Defence “Communities across Canada, and here in Nova Scotia, will greatly benefit from this important long-term investment in skilled employment in Canada's technology sector. Our Government is making sure defence contracts bring prosperity and support as well as critical Canadian Armed Forces equipment. ” Bernadette Jordan, Minister of Rural Economic Development “The Industrial and Technological Benefits Policy helps to create jobs, supports innovation and stimulates economic growth in Canadian communities. These contracts will continue to advance Key Industrial Capabilities in Canada and help support our Royal Canadian Navy.” Navdeep Bains, Minister of Innovation, Science and Economic Development “Our Government is committed to building a more agile, better-equipped military, while supporting the Canadian economy. These enhancements to the Halifax-class frigates will provide the Royal Canadian Navy with the latest technology it needs to detect incoming threats.” Carla Qualtrough, Minister of Public Services and Procurement and Accessibility “Defence contracts create tangible benefits for Canadians. These defence contracts will bring highly skilled jobs and generate economic opportunities to communities on the East Coast and in Canada for many years, while supporting the operations of the Royal Canadian Navy. Andy Fillmore, Parliamentary Secretary to the Minister of Canadian Heritage and Multiculturalism Quick facts Halifax-class frigate sonar operators detect, locate and track surface and sub-surface threats through the continuous monitoring and collection of information via high-tech sensors. The $186 million contracts include acquisition and upgrade for the first six Halifax-class frigates ($103 million) and in-service support (potentially $83 million). The contracts include options to upgrade all twelve Halifax-class frigates, which would bring the acquisition portion of to $170 million. The in-service support contract will maintain and sustain upgraded suites for up to 23 years, if all options are exercised. The first installation of the upgraded underwater warfare suite is expected to be completed in 2021 and operational in 2022. Licensed Defence Research and Development Canada Intellectual Property forms the basis of the winning technical bid for the UWSU Project. A repository of re-usable software has been developed over 25 years by DRDC in support of RCN and RCAF technology demonstration projects in underwater warfare. The Industrial and Technological Benefits Policy applies to this project, creating jobs and supporting key industrial capabilities in Canada. Associated links Canadian Patrol Frigates Halifax-class modernization and frigate life extension https://www.canada.ca/en/department-national-defence/news/2019/02/contracts-awarded-to-enhance-tracking-and-detecting-capabilities-of-halifax-class-frigates.html

All news