Back to news

May 22, 2019 | Local, Other Defence

C2MI ET VARITRON INAUGURENT LE PREMIER CENTRE DE FABRICATION DE POINTE AU CANADA CONSACRÉ À L’ASSEMBLAGE DE CARTES ÉLECTRONIQUES ET À L’ÉLECTRONIQUE IMPRIMÉE

C2MI et Varitron inaugurent le premier centre de fabrication de pointe au Canada consacré à l'assemblage de cartes électroniques et à l'électronique imprimée

Bromont et Saint-Hubert (Québec), 17 mai 2019 – C2MI etVaritron sont fières d'annoncer officiellement l'ouverture du premier centre de fabrication de pointe au Canada consacré entièrement à l'assemblage de cartes électroniques et à l'électronique imprimée. Établi dans le centre de recherche de C2MI à Bromont, le centre de fabrication de pointe sera doté des équipements à la fine pointe utilisés dans les domaines de l'électronique imprimée, de l'assemblage de circuits, de la nanoprotection et des techniques de refroidissement avancées ainsi que d'une chaîne d'approvisionnement intégrée qui permettra une fabrication à grande échelle. Cette annonce a été faite dans le cadre du CPES2019, le plus important congrès canadien sur l'électronique imprimable, flexible et hybride, organisé par intelliFLEX à Bromont les 16 et 17 mai derniers.

Des installations uniques pour accélérer le développement des technologies émergentes

L'objectif de ces nouvelles installations est de veiller à ce que des entreprises de tous les segments de marché demeurent des fournisseurs de premier plan par leurs capacités à offrir de nouveaux produits, de nouvelles possibilités et de nouvelles applications, restant ainsi à l'avant-garde du processus de l'offre et de la demande. Des équipes hautement qualifiées composées d'experts et de scientifiques chevronnés provenant de l'industrie et du milieu universitaire aideront les entreprises dans leur développement de produits et leur processus de conception, tout en continuant de se concentrer sur des cibles de production à grande échelle pour les diverses solutions qu'elles proposent.

Les entreprises pourront avoir accès à des services à la carte ou proposer des technologies qui n'ont pas encore été testées ou développées en utilisant un éventail de services allant de la conception à la commercialisation. La Politique des retombées industrielles et technologiques (RIT) est un incitatif significatif pour les entreprises étrangères qui choisiront d'utiliser les services du centre de fabrication de pointe puisque cette politique exige que les entreprises à qui l'on octroie des contrats dans le domaine de la défense exercent leurs activités au Canada.

Le projet du centre de fabrication de pointe, qui représente un investissement total de 6,5 M$, a pu être réalisé gr'ce à la collaboration scientifique de l'Université de Sherbrooke et de Varitron, ainsi qu'au financement du Ministère de l'Économie et de l'Innovation du Québec de l'ordre de 3 M$, du C2MI pour 2,1 M$ ainsi qu'aux fournisseurs d'équipement qui ont contribué jusqu'à 1,4 M$ en capacités à valeur ajoutée.

« Le centre de fabrication de pointe jouera un rôle déterminant pour que les entreprises canadiennes demeurent en tête de peloton de la concurrence en accélérant le développement de solutions et de produits novateurs afin que ces derniers soient commercialisés plus rapidement. En tant que centre de recherche et de développement, l'un de nos objectifs principaux est de veiller à ce que nos installations soient dotées d'équipements qui assureront la compétitivité de nos clients et de nos membres, peu importe le secteur industriel dans lequel ils évoluent », a indiqué Normand Bourbonnais, chef de la direction de C2MI.

« Ce centre de fabrication de pointe est une étape importance pour s'assurer que l'écosystème d'innovations a accès à des installations et des équipements de pointe et à la plus récente expertise scientifique pour accélérer son développement technologique », a dit Michel Farley, président et chef de la direction de Varitron. « Après plus de quatre ans de planification et de peaufinage, Varitron est fière de voir ce projet se concrétiser. »

http://www.c2mi.ca/communique-de-presse/c2mi-et-varitron-inaugurent-le-premier-centre-de-fabrication-de-pointe-au-canada-consacre-a-lassemblage-de-cartes-electroniques-et-a-lelectronique-imprimee/

On the same subject

  • An Investment in Capability

    October 25, 2018 | Local, Aerospace

    An Investment in Capability

    If you're planning to become hopelessly lost, my advice is to do it in Norway. That was the author's conclusion after Skies was invited to the Leonardo Helicopters facility in Yeovil, England, to fly the latest variant of the AW101 search and rescue (SAR) helicopter. The machine was brand new, pending delivery to Norway, but represented a configuration that Leonardo has proposed to the Royal Canadian Air Force (RCAF) as an upgrade for Canada's fleet of CH-149 Cormorant SAR helicopters. AN OPPORTUNITY FOR THE RCAF The CH-149 Cormorant entered RCAF service in 2002. While not an old airframe by Canadian standards, the subsequent evolution of the model has left our version somewhat dated, and Leonardo maintains that obsolescence issues are beginning to adversely affect operational availability Team Cormorant is an industry consortium composed of Leonardo Helicopters, IMP Aerospace & Defence, CAE, GE Canada and Rockwell Collins Canada. The group's unsolicited proposal to the Air Force is intended to guard against creeping obsolescence and ultimately to reduce the cost of operating the helicopter. Under Team Cormorant's proposal, the RCAF would also acquire a training facility with a modern full-mission simulator, likely to be installed at 19 Wing Comox, B.C. The machine on offer to Canada is an extensively upgraded version of the RCAF's existing airframe, based upon the AW101-612 configuration; 16 of which are destined for Norway under its Norwegian All-Weather SAR Helicopter (NAWSARH) program. Team Cormorant's proposal to Canada also seeks to take advantage of nine former VH-71 Kestrel airframes from the cancelled U.S. presidential helicopter program, acquired by the RCAF in 2011. These would be used to augment the Cormorant fleet from the current 14–widely acknowledged as inadequate for Canadian SAR requirements–up to potentially 21 machines. Enhanced fleet size would allow the RCAF to base the Cormorant at 8 Wing Trenton, Ont.; a move that would improve SAR capability in the vast Trenton SAR region. Compared to in-service CH-149 Cormorants, the upgrades on offer include new, more powerful, full-authority digital electronic-controlled (FADEC) General Electric CT7-8E turboshaft engines; a more modern Rockwell Collins cockpit and avionics suite; improved aircraft management system; and a newly designed, four-axis dual-duplex digital automatic flight control system (AFCS). The sensor package promises the biggest capability upgrade, and includes an electro-optical surveillance system; a multi-mode active electronically-scanned array (AESA) radar; cell phone detection and tracking system; and marine automatic identification system (AIS) transponder receiver. AN OPPORTUNITY FOR COMPARISON In 2016, Skies dispatched me to fly the CH-149 Cormorant with RCAF's 442 Squadron at CFB Comox. It was an opportunity for this former Air Force CH-113/A Labrador SAR pilot to see first-hand how the Cormorant had changed the job I did decades ago in those same mountains. I recall that the Cormorant brought a lot of new technology to the SAR business, but the basic mission, like the mountains around us, was unchanged. After that flight, I reported: “Flying SAR was still a matter of cautious and skillful flying, using maps and looking out the window.” That experience left me with great regard for Air Force SAR crews and for the operational capability of the Cormorant, but also bemused to find that the business of searching still basically relied upon the “Mark 1 eyeball.” A flight in the latest variant of the AW101 was a terrific opportunity for a more contemporary comparison. The experience would demonstrate that leading-edge systems–particularly electro-optic sensor technologies–offer SAR capabilities that are as much a generational improvement over the current Cormorant as the Cormorant was over my beloved ol' Labrador. A CANADIAN FLIES A NORWEGIAN HELICOPTER IN ENGLAND Leonardo Helicopters test pilot Richard “Russ” Grant kindly offered me the right seat for our demonstration flight. Veteran flight test engineer (FTE) Andy Cotton served as sensor operator. Conditions were ideal, under a clear sky with a warm (24 C) gentle breeze along the century-old former-Westlands grass runway. Our test helicopter was the sixth production machine destined for Norway, operated by Leonardo under U.K. Ministry of Defence registration ZZ015. The helicopter's empty weight was 11,039 kilograms with much of its SAR interior yet to be fitted. Adding 2,000 kilograms of fuel (roughly half its 4,150-kilogram capacity) and three crewmembers brought the takeoff mass to 13,517 kilograms, which was well below the maximum allowable gross weight of 15,600 kilograms. The Cormorant that Skies flew with RCAF's 442 Squadron, although fully equipped for SAR with a standard fuel load of 2,400 kilograms and a crew of six, had a gross takeoff mass of 13,800 kilograms, which was below the maximum allowable gross weight of 14,600 kilograms. Direct comparison is difficult to establish, but the Norwegian machine is both heavier with installed systems and has more installed power than the CH-149, so the net result may be expected to be about the same operational power margin. Rapid dispatch can be facilitated by starting the auxiliary power unit (APU) while strapping in. Grant talked me through the engine starting procedure from memory. Air Force crews will use a checklist, but the procedure was quick and straightforward Engine controls consisted of three rotary knobs on the overhead panel in place of engine condition levers. I monitored the start, but Grant advised that in the event of a start-up malfunction the FADEC would shut down the engine faster than the pilots could react. We started the No. 1 engine first to power the accessory drive, providing hydraulic and electric power and bleed air. Starts of engines No. 2 and No. 3 were done simultaneously. Pre-flight checks and initialization of the aircraft management system (AMS, but think “master computer”) took Grant only minutes. Despite the functional similarity of the cockpit to the CH-149, the impression that I was amidst unfamiliar new technology was immediate. As ground crews pulled the chocks and busied themselves around the helicopter, the onboard Obstacle Proximity LIDAR System (OPLS, where LIDAR is light detection and ranging, since I needed to ask, too) annunciated their presence around the turning rotors. This system, which Grant described as being like the parking sensors in a car, provided a pop-up display and discretely-pitched audio cues depicting the range and azimuth to obstacles around the helicopter. Having come from a generation where we squinted into a landing light beam to guesstimate rotor clearance from obstacles, all I can say is, I want one! Full article: https://www.skiesmag.com/features/an-investment-in-capability

  • Remotely Piloted Aircraft Systems Project (RPAS)- Webinar

    June 15, 2020 | Local, Aerospace

    Remotely Piloted Aircraft Systems Project (RPAS)- Webinar

    AN OPPORTUNITY TO LEARN ABOUT CANADA'S LARGEST UNMANNED SYSTEMS DEFENCE PROCUREMENT Get informed on the Government of Canada's Remotely Piloted Aircraft System Project and how Canadian industry and other stakeholders can be best positioned for industrial opportunities As part of Canada's defence policy, Strong, Secure, Engaged (SSE), the Department of National Defence has committed to acquiring a Remotely Piloted Aircraft System (RPAS). This project will acquire a medium altitude and armed RPAS, along with associated equipment, weapons, infrastructure, and in-service sustainment capability. Canada's Industrial and Technology Benefits (ITB) Policy will be applied on this project, requiring the chosen supplier to make investments in Canada equal to the value of the contracts. that align with Value Proposition (VP) strategic objectives. Unmanned Systems Canada (USC) is organizing a webinar to brief Canadian industry and other stakeholders on the RPAS project, including key information on project requirements, procurement process and project timelines. The webinar will also be used to familiarize Canadian industry and other stakeholders on the ITB Policy and describe the initial Value Proposition approach. It will also describe the next steps on how Canadian stakeholders can provide input and feedback to refine the VP for this project to ensure strong economic benefits for Canada. This joint presentation will include representatives from the Department of National Defence, Public Services and Procurement Canada and Innovation, Science and Economic Development Canada. In addition, the webinar will include brief presentations from the two Qualified Suppliers on the Project: L3 Technologies MAS Inc, and General Atomics Aeronautical Systems, Inc. Webinar date: June 22nd, 2020 English session: 1:00 pm EDT French session: 2:30 pm EDT Each session is one hour in length. English webinar registration link: https://us02web.zoom.us/webinar/register/WN_Fz7G5NglR-aWIw_aW1Pa7g French webinar registration link: https://us02web.zoom.us/webinar/register/WN_XcA8YokRRw67fBL3A3dnKg Links to project information are here: PSPC Website - https://www.tpsgc-pwgsc.gc.ca/app-acq/amd-dp/air/snac-nfps/sdat-rpac-eng.html DND Website - https://www.canada.ca/en/department-national-defence/services/procurement/remotely-piloted-aircraft-system.html ISEDC - http://www.Canada.ca/ITB

  • Canadian military finances technology to collect social media data despite claims it was shutting down such efforts

    January 19, 2023 | Local, Other Defence

    Canadian military finances technology to collect social media data despite claims it was shutting down such efforts

    Defence firms and other companies were given almost $10 million to develop new ways to analyze social media and sift through accounts.

All news