Back to news

August 23, 2023 | International, Aerospace

Brazil to double air fleet as part of $10.6 billion investment

For the Brazilian Air Force, the plan involves the production and acquisition of 34 F-39 Gripen fighters.

https://www.defensenews.com/global/the-americas/2023/08/23/brazil-to-double-air-fleet-as-part-of-106-billion-investment/

On the same subject

  • Companies are lining up to build a replacement for the MQ-9 Reaper drone

    September 18, 2020 | International, Aerospace

    Companies are lining up to build a replacement for the MQ-9 Reaper drone

    Valerie Insinna WASHINGTON — As the U.S. Air Force embarks on a new effort to field a replacement for the MQ-9 Reaper drone, multiple defense companies are stepping up with new, long-range, stealthy design concepts for the emerging MQ-Next competition. On Sept. 11, Northrop Grumman and Lockheed Martin released renderings of their respective offerings for the Air Force's MQ-Next program. Northrop made public its swarming SG-2 concept, and Lockheed announced its flying-wing design. General Atomics put out a concept drawing of a next-generation uncrewed aerial system on Sept. 14 to correspond with the first day of the Air Force Association's Air, Space and Cyber Conference. For the past two decades, the Air Force has relied on the MQ-1 Predator and then the MQ-9 Reaper — both made by General Atomics — as its workhorse drones for surveillance and strike missions in the Middle East. But as more commercial drone makers enter the fray, it may become more economical and effective to operate a family of UAVs, with some built for high-end penetrating strike and reconnaissance missions, and others for low-end surveillance from commercial off-the-shelf manufacturers, said Will Roper, the Air Force's top acquisition official. “You might make the case that the Department [of the Air Force] needs both,” he said during a Sept. 15 roundtable with reporters. “But I wanted to give our team time to discuss with industry options that exist on both sides of that divide. We've got a lot of interesting responses, and I'm in discussions right now with the operational side of the Air Force about what they think the requirement is going to be.” The Air Force issued a request for information to industry on June 3, seeking market research on available technologies as well as conceptual designs. Boeing and Kratos each confirmed they responded to the request for information but have not released concept art for their potential offerings. General Atomics, Lockheed and Northrop have begun to shed light on their respective designs. Northrop's flying-wing design bears a close resemblance to the X-47B the company designed for the Navy, including using the same Distributed Autonomy/Responsive Control flight management system, which allows for operators to task multiple drones to fly autonomously according to parameters set by the user. However, the aircraft in the rendering is just one potential concept that Northrop could develop for the MQ-Next family of systems, said Richard Sullivan, the company's vice president of program management. “The customer didn't really give us strict requirements. We know that the [National Defense Strategy] scenario calls out environments with a pretty significant threat scenario. And so, what would we do to mitigate those?” he said. “We looked at those things, and we came up with a family of concepts ... trying to solve the problem across the landscape in terms of the ranges, the threats and the costs.” The General Atomics concept features a stealthy, long-winged, jet-powered air vehicle — a departure from the turboprop-powered MQ-9 Reaper. Dave Alexander, president of General Atomics Aeronautical Systems, told Defense News that the aircraft's survivability and endurance, which is “significantly longer” than the Reaper, will be defining characteristics for the company's offering. Alexander also pointed to internal investments made by the company's aeronautics division and its Electromagnetic Systems Group on advanced propulsion systems, though he declined to say more about potential engine advancements. Keeping costs down will also be an important factor, he said. “Some platforms that get up to super high costs, even though they're unmanned — you can't afford to lose them. So they're not attrition-tolerant, and we want to hang on to that piece of it.” Lockheed Martin's operational analysis has found that an optimal-force mix of drones will require high-end aircraft and low-cost, expendable systems that can operate in swarms, according to Jacob Johnson, the company's unmanned aerial systems program manager. The company's next-generation UAS concept art features a tailless, stealthy, flying-wing design geared toward the high-end fight, although Johnson said Lockheed may put forward less exquisite systems depending on the Air Force's final requirements. “Over the last few years, with a lot of the [drone] shootdowns across the globe, one of the trends that I think is hard to ignore is what used to be considered permissive airspace. [It] is becoming increasingly contested,” he said. “Survivability is really the key to almost any mission, and I think that trend is going to continue into the future.” However, survivability alone will not be enough, Johnson said. The Air Force has made clear that any future air system must plug into the service's Advanced Battle Management System and export data across that system. Lockheed also plans to develop the drone using digital engineering to lower the total cost. https://www.defensenews.com/digital-show-dailies/air-force-association/2020/09/17/defense-companies-are-lining-up-to-build-a-replace

  • Technological Advancements Make The CSC The Right Choice For The Royal Canadian Navy

    February 15, 2021 | International, Naval

    Technological Advancements Make The CSC The Right Choice For The Royal Canadian Navy

    Like many navies around the world, the Royal Canadian Navy (RCN) is making use of the most modern technological advancements in the design and planning of its forthcoming 15 Canadian Surface Combatants (CSC) – a single class of multi-role ships that will form the backbone of Canada's combat sea power. Royal Canadian Navy press release Life onboard the new CSC will be exciting for RCN sailors, as these ships will embrace leading edge technology and improved habitability, and are designed to take them well into the latter half of the 21st Century. How do technological advancements impact operations onboard the ship? Well for starters, a sailor will be able to view on one computer terminal or platform various streams of digital content/information originating from different sources – a process called convergence. Convergence will allow any operations room or bridge terminal to show video or data feeds from any sensor, weapon, or software support system. Not only does this mean that leadership teams will have real-time warfare and platform data at their fingertips from various onboard locations, it also means that the physical space and power required to run multiple terminals will be reduced. Until recently, electronic systems onboard a warship such as the weapons and sensor systems, took up space, and lots of it. However, with the application of widespread digitization and use of solid state electronics onboard the CSC, dedicated space requirements have been considerably reduced, while the capability and flexibility of these systems have been increased. By capitalizing on miniaturization and digitization, much of this new-found square footage can be freed up to improve working and habitability conditions, including making accommodations and personal living spaces better for the crew. Multi-function equipment will be incorporated wherever practical onboard the CSC. For example, a single digital beam-forming radar can replace multiple traditional radars, software-defined radios can be setup to support different communications requirements on the fly, and programmable multi-purpose weapons will be able to engage more than one kind of target, while being controlled from a common vertical launcher. Multi-functionality even extends to the CSC's modular mission bay: a reconfigurable space able to accommodate and integrate any container payload imaginable. When taken as a whole, the technology advancements that will be incorporated into the CSC means the single-class, single variant choice, coupled with the inherent and multi-role capabilities that it will bring, will serve Canadian interests for decades into the future. The CSC is the right choice for the RCN and the right choice for Canada. Canada's defence policy, “Strong, Secure, Engaged” (SSE), has committed to investing in 15 Canadian Surface Combatant (CSC) ships. In February 2019, the Government of Canada confirmed that the bid from Lockheed Martin Canada has been selected for the design and design team for the Canadian Surface Combatants. Irving Shipbuilding Inc., the project's prime contractor, awarded a sub-contract to Lockheed Martin Canada for work to finalize the design. The winning bid is based on the BAE Systems Type 26 Global Combat Ship. These ships will be Canada's major surface component of maritime combat power. With its effective warfare capability and versatility, it can be deployed rapidly anywhere in the world, either independently or as part of a Canadian or international coalition. The CSC will be able to deploy for many months with a limited logistic footprint. The CSC will be able to conduct a broad range of tasks, including: Delivering decisive combat power at sea; Supporting the Canadian Armed Forces, and Canada's Allies ashore; Conducting counter-piracy, counter-terrorism, interdiction and embargo operations for medium intensity operations; and Delivering humanitarian aid, search and rescue, law and sovereignty enforcement for regional engagements. The ship's capability suite includes: Four integrated management systems, one each for the combat system, platform systems, bridge and navigation systems and a cyber-defence system; A digital beam forming Active Electronically Scanned Array (AESA) radar (the SPY-7 by Lockheed Martin) and solid state illuminator capability; The USN Cooperative Engagement Capability system; A vertically launched missile system supporting long, short and close-in missile defence, long-range precision naval fires support and anti-ship engagements; A 127mm main gun system and dual 30mm gun mounts; A complete electronic warfare and countermeasures suite; A fully integrated underwater warfare system with bow-mounted sonar, towed low frequency active and passive sonar, lightweight torpedoes and decoys; Fully integrated communications, networking and data link capabilities; and A CH-148 Cyclone multi-role helicopter, multi-role boats and facilities for embarking remotely piloted systems. CSC Specifications: Length: 151.4 metres Beam: 20.75 metres Speed: 27 knots Displacement: 7,800 tonnes Navigational Draught: ~8m Range: 7000 nautical miles Class: 15 ships Accommodations: ~204 https://www.navalnews.com/naval-news/2021/02/technological-advancements-make-the-csc-the-right-choice-for-the-royal-canadian-navy/

  • Sikorsky lands $470.8M deal for presidential helicopter upgrade

    February 20, 2020 | International, Aerospace

    Sikorsky lands $470.8M deal for presidential helicopter upgrade

    Feb. 19 (UPI) -- Sikorsky Aircraft was awarded a $470.8 million modification for six VH-92A helicopters for the presidential helicopter replacement program. The deal modifies a $542 million contract awarded in June to build six new helicopters for the Presidential fleet. Under the modification, Sikorsky -- a division of Lockheed Martin -- will provide interim contractor support and six cabin interior reconfiguration kits as well as six low rate initial production lot II VH-92A aircraft for the presidential fleet. The Navy plans to replace the current Marine Corps fleet of 19 helicopters, composed of the VH-3D, which entered service in 1978 and the VH-60N aircraft, which arrived in 1987 -- with 23 new aircraft. The VH-92A is designed to increase performance and payload, including crew coordination systems and communications capabilities, and be easier to maintain. In December, General Electric received an $11.1 million contract to build five CT7-8A6 engines for the presidential helicopter fleet. https://www.upi.com/Defense-News/2020/02/19/Sikorsky-lands-4708M-deal-for-presidential-helicopter-upgrade/1301582159979/

All news