Back to news

September 30, 2022 | International, C4ISR

BigBear.ai delivering US Army digital info system with Palantir's help

Modernization of the Army's networks and underlying computer infrastructure is among the service's most pressing priorities.

https://www.c4isrnet.com/industry/2022/09/30/bigbearai-delivering-us-army-digital-info-system-with-palantirs-help/

On the same subject

  • Boeing Receives $1.5 Billion P-8A Poseidon Contract From U.S. Navy

    April 1, 2020 | International, Naval

    Boeing Receives $1.5 Billion P-8A Poseidon Contract From U.S. Navy

    Arlington Va., March 30, 2020 - The U.S. Navy awarded Boeing [NYSE: BA] a $1.5 billion production contract for the next 18 P-8A Poseidon aircraft. The contract includes eight aircraft for the U.S. Navy, six aircraft for the Republic of Korea Navy and four aircraft for the Royal New Zealand Air Force. The Republic of Korea Navy and Royal New Zealand Air Force acquired the aircraft through the Foreign Military Sales process and will receive the same P-8A Poseidon variant designed and produced for the U.S. Navy. The Royal New Zealand Air Force is expected to begin receiving aircraft in 2022 and the Republic of Korea Navy is expected to begin receiving aircraft in 2023. The P-8 is a proven long-range multi-mission maritime patrol aircraft capable of broad-area, maritime and littoral operations. A military derivative of the Boeing 737 Next-Generation airplane, the P-8 combines superior performance and reliability with an advanced mission system that ensures maximum interoperability in the battle space. The P-8 is militarized with maritime weapons, a modern open mission system architecture and commercial-like support for affordability. The aircraft is modified to include a bomb bay and pylons for weapons. It has two weapons stations on each wing and can carry 129 sonobuoys. The aircraft is also fitted with an in-flight refueling system. With more than 254,000 flight hours to date, the P-8A Poseidon and P-8I variants patrol the globe performing anti-submarine and anti-surface warfare; intelligence, surveillance and reconnaissance; humanitarian; and search and rescue missions. For more information on Boeing Defense, Space & Security, visit www.boeing.com. Follow us on Twitter: @BoeingDefense and @BoeingSpace. # # # Contact Kymberly VanDlac Defense, Space & Security Communications Mobile: +1 425-210-7851 Kymberly.y.vandlac@boeing.com View source version on Boeing Newsroom: https://boeing.mediaroom.com/2020-03-30-Boeing-Receives-1-5-Billion-P-8A-Poseidon-Contract-From-U-S-Navy

  • Turkey’s ‘chronic engine problem’ is harming defense projects, warn officials

    June 29, 2020 | International, Aerospace

    Turkey’s ‘chronic engine problem’ is harming defense projects, warn officials

    By: Burak Ege Bekdil ANKARA, Turkey — Turkey's inability to produce a fully indigenous engine is harming some of the country's otherwise successful domestic defense programs, according to industry and government officials. “We had it 15 years ago, we had it 10 years ago and we are still having it,” said a former defense industry chief. “It's our chronic engine problem.” A government procurement official agreed, telling Defense News that “at best the problem causes major delays, and at worst it can be an existential threat [to programs].” The Altay, a multibillion-dollar program for the production of Turkey's first indigenous tank, has long been delayed due to difficulties surrounding the engine and transmission used to power the new-generation tank. BMC, a Turkish-Qatari joint venture that in 2018 won the serial production contract for the Altay, said in October 2020 that the tank would be fielded within 24 months. The original target was to have the Altay in the field this year 2020. Today, procurement officials and industry sources say even 2022 is an optimistic deadline. Western countries with power pack technology, particularly Germany, have been reluctant to share technology or sell to Turkey for political reasons. “Lack of a feasible power pack [engine and transmission] is depriving the program of any sensible progress,” noted an industry source. Turkey also needs an engine for the new-generation TF-X fighter jet as well as indigenous helicopter models in the making. At the center of these engine efforts is Tusas Engine Industries, a state-controlled engine maker. TEI announced June 19 that it successfully tested its locally made TJ300 miniature turbojet engine, which the company produced for medium-range anti-ship missiles. The engine features a thrust rating of 1.3 kilonewtons. Company officials say the TJ300 engine's more advanced, future versions could power larger anti-ship cruise missiles and land-attack cruise missiles. Turkey hopes to power its anti-ship and land-attack cruise missiles with locally developed engines. “The effort is about ending dependency on imported designs,” a TEI official said. Turkey currently imports miniature air-breathing engines from Microturbo — a unit of French company Safran — to power its domestically developed cruise missiles. Separately, Turkey's Kale Group is developing a larger, albeit miniature turbojet engine called the KTJ-3200. It has a 3.2-kilonewton thrust rating, and will power the Atmaca and SOM missile systems. On a much bigger scale, Kale Group has ambitions to develop an engine to power the TF-X. In 2017, Kale Group and British company Rolls-Royce launched a joint venture to develop aircraft engines for Turkey, initially targeting the TF-X. But the £100 million (U.S. $124 million) deal was effectively put on hold due to uncertainties over technology transfer. In December, Turkish Foreign Minister Mevlüt Çavusoğlu said the government is keen to revive talks with Rolls-Royce. When asked for an update on negotiations, a Rolls-Royce spokesperson told Defense News: “We submitted an engine co-development proposal to Turkey, but the customer has not elected to pursue this to date.” A year before the Kale Group-Rolls-Royce partnership, Turkish Aerospace Industries — a sister company of TEI — signed a $125 million heads of agreement with U.K.-based firm BAE Systems to collaborate on the first development phase of the TF-X. Turkey originally planned to fly the TF-X in 2023, but aerospace officials are now eyeing 2025 at the earliest. TEI is also developing the TS1400, a turboshaft engine it intends to power the T625 Gökbey, a utility and transport helicopter developed and built by TAI. The Gökbey currently flies with the CTS-800A turboshaft engine supplied by Light Helicopter Turbine Engine Company, a joint venture between American firm Honeywell and Rolls-Royce. The Gökbey made its maiden flight in September. TEI says it successfully tested the “core” of its TS1400 turboshaft engine and plans to deliver the prototype to TAI in late 2020. But analysts remain cautious. “These efforts may eventually fail to materialize without meaningful foreign know-how,” said a London-based Turkey specialist. “Or they may come at costs not viable for mass production.” Andrew Chuter in London contributed to this report. https://www.defensenews.com/industry/techwatch/2020/06/26/turkeys-chronic-engine-problem-is-harming-defense-projects-warn-officials/

  • What’s industry role in DoD information warfare efforts?

    July 20, 2020 | International, Aerospace, C4ISR

    What’s industry role in DoD information warfare efforts?

    Mark Pomerleau Government leaders are telling industry they need help with integration as the Department of Defense and individual services push toward a unifying approach to information warfare. Information warfare combines several types of capabilities, including cyber, intelligence, electronic warfare, information operations, psychological operations and military deception. On a high-tempo battlefield, military leaders expect to face against a near peer or peer adversary. There, one-off solutions, systems that only provide one function, or those that can't feed information to others won't cut it. Systems must be multi-functional and be able to easily communicate with other equipment and do so across services. “A networked force, that's been our problem for years. Having built a lot of military systems, a lot in C4 and mission command, battle command, we build them and buy them in stovepipes. Then we think of integration and connecting after the fact,” Greg Wenzel, executive vice president at Booz Allen, told C4ISRNET. “My whole view ... networking the force really is probably the best thing to achieve overmatch against our adversaries.” Much of this networking revolves around new concepts DoD is experimenting with to be better prepared to fight in the information environment through multi domain operations or through Joint All-Domain Command and Control (JADC2). The former aims to seamlessly integrate the capabilities of each domain of warfare – land, sea, air, space and cyber – at will. It also aims to integrate systems and capabilities across the services under a common framework to rapidly share data. While not an official program, JADC2 is more of a framework for the services to build equipment. “It's more likely a mish-mash of service level agreements, pre-scripted architecting and interoperability mandates that you got to be in keeping with those in order to play in the environment,” Bill Bender, senior vice president of strategic accounts and government relations at Leidos, told C4ISRNET of JADC2. “It's going to take a long journey to get there because, oh by the way, we're a very legacy force and ... a limited amount of technology has the interoperability that is absolutely required for that mission to become a reality.” The “information warfare” nomenclature can fell nebulous and hard to understand for industry officials that provide solutions to the Pentagon. “It's a pretty broad definition. I think it's something that the DoD is struggling with, that's what we're struggling with in industry and it also makes it challenging because no one really buys equipment that way,” Anthony Nigara, director of mission solutions for electronic warfare at L3Harris, said. “No one really buys stuff to an abstract term like information warfare.” Others agreed that the term “information warfare” may be too broad, an issue that's further complicated as each service tackles information warfare in their own way. Most members of industry C4ISRNET talked with on the need to integrate described the key theme of a more networked force as a unifying way to think about the new push to information warfare. “There's a lot of discussions about the Joint All Domain Operations or the multidomain operations. When we look at that and we want to say ‘okay, what is information warfare really mean to everyone?” Steven Allen, director of information operations and spectrum convergence at Lockheed Martin rotary and mission systems, told C4ISRNET. “We look at it as how can we get the right information to warfighters in order to fight or how do we get the right information for them to plan? How do we move all that data across whether it's different levels of security or different levels of the warfighting and the data associated with it.” Others expressed the need for contractors to be flexible with how DoD is describing its needs. “Industry has learned to be flexible in responding to messaging calling for new situational awareness capabilities while other established capabilities were being mandated for use in cyber exercises,” Jay Porter, director of programs at Raytheon Intelligence & Space, said. The push to a more information warfare-centric force under the guise of larger concepts to defeat adversaries is pushing the DoD as a whole to fight in a more joint manner. Paul Welch, vice president and division manager for the Air Force and defense agencies portfolio at Leidos, explained that there's a consistent view by the services and the department that they must integrate operations within the broad umbrella of activities called information warfare just as they're integrating warfighting capabilities between the services and across the domains. This goes beyond merely deconflicting activities or cooperation, but must encompass true integration of combat capabilities. Some members of industry described this idea as one part of convergence. “When I talk about convergence, my observation is there is a convergence in terms of of a family of technologies and of a family of challenge problems and how do they come together,” Ravi Ravichandran, chief technology officer of the intelligence and security sector at BAE, told C4ISRNET. Ravichandran provided five specific challenge problems the military may have in which a married suite of technologies can help provide an advantage against adversaries. They include JADC2, overmatch or the notion of assembling technologies in a way better than enemies, joint fires where one service's sensors may be acquiring a target and passing that target off to another service to prosecute it, sensing in the electromagnetic spectrum and strategic mobility to get forces and resources to a particular place at a particular time. Similarly, Welch provided the notional example of an F-35 flying over an area, seeing something on its sensors and sending that information to either an Army unit, a carrier strike group, a Marine Corps unit, or even a coalition partner to seamlessly and rapidly understand the information and act upon it. These sensors must be incorporated into a joint kill chain that can be acted upon, coordinated and closed by any service at any time. Allen noted that when looking at information warfare, his business is examining how to take a variety of information from sensor information to human information to movement information and pull it all together. “There's a lot of discussion on [artificial intelligence] AI and machine learning and it's very, very important, but there's also important aspects of that, which is hey what's the technology to help the AI, what's that data that's going to help them,” he said. “We tend to look very closely with the customers on how do we really shape that in terms of the information you're getting and how much more can you do for the warfighter.” By bringing all these together, ultimately, it's about providing warfighters with the situational awareness, command and control and information they need to make decisions and cause the necessary effects, be it cyber C4ISR, intelligence or electronic warfare, Nigara said. Porter said at Raytheon's Intelligence & Space outfit, they view information warfare as “the unification of offensive and defensive cyber missions, electronic warfare and information operations within the battlespace.” Integrating EW and IO with cyber will allow forces to take advantage of a broader set of data to enable high-confidence decision-making in real time, he added, which is particularly important in the multi-domain information environment to influence or degrade adversary decision making. From a Navy perspective, the ability to share data rapidly across a distributed force within the Navy's distributed maritime operations concept will be critical for ensuring success. “We will certainly have to include the mechanisms with which we share information, data and fuse that data from node to node. When I say node to node, a node may be a ship, a node may be an unmanned vehicle and a node may be a shore based facility,” Kev Hays, director of information warfare programs at Northrop Grumman, who mostly supports the Navy, said regarding areas Northrop is investing. “Linking all those participants into a network ... is critically important. We have quite a bit of technology we're investing in to help communicate point to point and over the horizon and a low probability of intercept and low probability of detection fashion.” Ultimately, the information space is about affecting the adversary's cognitive space, they said. “When it comes to information warfare, it's a lot less tangible ... It's not tank on tank anymore. You're trying to affect people's perception,” James Montgomery, capture strategy lead for information operations and spectrum convergence at Lockheed Martin rotary and mission systems, told C4ISRNET. As a result, he said, it is critical to take the time with the customer to truly understand the concepts and capabilities and how they all fit together in order to best support them. “Really spending time with them [the customer] and understanding what it is that they're attempting to get at. It helps us better shape the requirements but it also helps us better understand what is it they're asking for,” he said. “When you're moving forward and attempting to come together with both a software hardware based solution to something, it takes a lot of talking time and a lot of touch time with that customer to understand where their head's at.” https://www.c4isrnet.com/information-warfare/2020/07/19/whats-industry-role-in-dod-information-warfare-efforts

All news