Back to news

October 29, 2021 | International, Aerospace

BAE Tempest : la possible participation japonaise

Le Japon pourrait devenir partenaire au sein du team Tempest, lequel devrait voir une évolution sous forme de contrats avec les principaux partenaires à savoir la Suède et l'Italie d'ici la fin de cette année. BAE Systems avait déjà proposé ses compétences dans le cadre de l'étude du F-X japonais, le successeur du F-2.

https://www.air-cosmos.com/article/bae-tempest-la-possible-participation-japonaise-25385

On the same subject

  • F-35 Propulsion Upgrade Moves Forward Despite Uncertainty

    July 22, 2020 | International, Aerospace

    F-35 Propulsion Upgrade Moves Forward Despite Uncertainty

    Steve Trimble July 21, 2020 An F-35B completed the first landing at sea on the USS Wasp in 2013. The Joint Program Office is considering thrust upgrades to increase the F-35B's “bring-back” payload to a carrier. Credit: MCSN Michael T. Forbes II/U.S. Navy Stabilizing the production system and securing a funded, long-term upgrade plan are now the main objectives for Pratt & Whitney's F135 propulsion system for the Lockheed Martin F-35. Although first delivered for ground--testing 17 years ago, the F135 remains a lifeline in Pratt's combat aircraft engines portfolio for new-development funding. The U.S. military engines market is entering an era of transition with great uncertainty for the timing of the next major combat aircraft program. Enhancement Package replaces “Growth Option” New F-35 propulsion road map due in six months The transition era begins with the likely pending delivery of Pratt's most secretive development project. In 2016, the U.S. Air Force named Pratt as one of seven major suppliers for the Northrop Grumman B-21 bomber. The Air Force also has set the first flight of the B-21 for around December 2021. That timing means Pratt is likely to have delivered the first engine for ground-testing. At some point within the next year, Pratt should be planning to deliver the first flight-worthy engine to Northrop's final assembly line in Palmdale, California, to support the Air Force's first B-21 flight schedule. As the bomber engine development project winds down, the propulsion system for the next fighter aircraft continues to be developed, but without a clear schedule for transitioning to an operational system. The Air Force Research Laboratory's Adaptive Engine Transition Program (AETP) is sponsoring a competition to develop an adaptive engine that can modulate the airflow into and around the core to improve fuel efficiency and increase range. The AETP competition is between Pratt's XA101 and GE's XA100 designs, with the first engines set to be delivered for ground-testing by the end of this year or early next year. As 45,000-lb.-thrust-class engines, the first AETP designs are optimized for repowering the single-engine F-35, but the F-35 Joint Program Office (JPO) has established no requirement to replace the F135 for at least another five years. A follow-on effort within the AETP is developing a similar engine for a next-generation fighter, but neither the Air Force nor the Navy have committed to a schedule for transitioning the technology into an aircraft-development program. That leaves Pratt's F135 as the only feasible application for inserting new propulsion technology for a decade more. After spending the last decade focused on completing development of the F-35 and upgrading the software, electronics and mission systems, the JPO is developing a road map to improve the propulsion system through 2035. As the road map is being developed, program officials also are seeking to stabilize the engine production system. Pratt delivered about 600 F135s to Lockheed through the end of last year, including 150—or about 25%—in 2019 alone. The JPO signed a $7.3 billion contract with Pratt last year to deliver another 509 engines in 2020-22, or about 170 a year. Although Pratt exceeded the delivery goal in 2019 by three engines, each shipment came an average of 10-15 days behind the schedule in the contract. The fan, low-pressure turbine and nozzle hardware drove the delivery delays, according to the Defense Department's latest annual Selected Acquisition Report on the F-35. Lockheed's production schedule allows more than two weeks before the engine is needed for the final assembly line, so Pratt's late deliveries did not hold up the overall F-35 schedule, says Matthew Bromberg, president of Pratt's Military Engines business. F135 deliveries finally caught up to the contract delivery dates in the first quarter of this year, but the supply chain and productivity disruptions caused by the COVID-19 pandemic have set the program back. About five engines scheduled for delivery in the second quarter fell behind the contractual delivery date, Bromberg says. The pressure will grow as a loaded delivery schedule in the second half of the year adds pressure on deliveries, but Pratt's supply chain managers expect to be back within the contract dates in the first quarter of next year, he says. The F-35 program's political nature also has caused program disruptions. The Defense Department's expulsion of Turkey from the F-35 program last year also banished the country's supply chain, which contributed 188 parts to the F135. In particular, Alp Aviation produces the Stage 2, 3, 4 and 5 integrally bladed rotors (IBR) for the F135. As of early July, about 128 parts now made in Turkey are ready to transition to other suppliers, of which about 80% are based in the U.S., according to Bromberg. The new suppliers should be requalified to produce those parts in the first quarter of 2021 and ready to meet production rate targets for Lot 15 aircraft, which will begin deliveries in 2023. “The overriding objective was to move with speed and diligence along the transition plan and ensure we are ready to be fully out of Turkey by about Lot 15,” Bromberg explains. “And we are on track for that.” As Pratt transfers suppliers, the company also has to manage the effect on potential upgrade options. Alp Aviation, for example, had announced a research and development program to convert the finished titanium IBRs to a more resilient nickel material. For several years, Pratt has sought to improve the performance of the F135 above the baseline level. In 2017, the company unveiled the Growth Option 1.0 upgrade, which is aimed at delivering modular improvements that would lead to a 5% or 6% fuel-burn improvement and a 6-10% increase in thrust across the flight envelope. The Marine Corps, in particular, was seeking additional thrust to increase payload mass for a vertical landing, but the proposed package did not go far enough to attract the JPO's interest. “It missed the mark because we didn't focus our technologies on power and thermal management,” Bromberg says. A year later, Pratt unveiled the Growth Option 2.0. In addition to providing more thrust at less fuel burn, the new package offered to generate more electrical power to support planned advances in the aircraft's electronics and sensors, with the ability to manage the additional heat without compromising the F-35's signature in the infrared spectrum. Last fall, the JPO's propulsion management office teamed up with the Advanced Design Group at Naval Air Systems Command to analyze how planned F-35 mission systems upgrades will increase the load on the engine's thrust levels and power generation and thermal management capacity. In May, the JPO commissioned studies by Lockheed and Pratt to inform a 15-year technology-insertion road map for the propulsion system. The road map is due later this year or in early 2021, with the goal of informing the spending plan submitted with the Pentagon's fiscal 2023 budget request. As the studies continue, a name change to Pratt's upgrade proposals reveals a fundamental shift in philosophy. Pratt's earlier “Growth Option” terminology is gone. The proposals are now called Engine Enhancement Packages (EEP). The goal of the rebranding is to show the upgrades no longer are optional for F-35 customers. “As the engine provider and the [sustainment] provider, I'm very interested in keeping everything common,” Bromberg says. “The idea behind the Engine Enhancement Packages is they will migrate into the engines or upgrade over time. We don't have to do them all at once. The [digital engine controls] will understand which configuration. That allows us again to be seamless in production, where I would presumably cut over entirely, but also to upgrade fleets at regularly scheduled maintenance visits.” Pratt has divided the capabilities from Growth Options 1 and 2 into a series of EEPs, with new capabilities packaged in increments of two years from 2025 to 2029. “If you go all the way to the right, you get all the benefits of Growth Option 2, plus some that we've been able to create,” Bromberg says. “But if you need less than that and you're shorter on time or money, then you can take a subset of it.” Meanwhile, the Air Force continues to fund AETP development as a potential F135 replacement. As the propulsion road map is finalized, the JPO will decide whether Pratt's F135 upgrade proposals support the requirement or if a new engine core is needed to support the F-35's thrust and power-generation needs over the long term. Previously, Bromberg questioned the business case for reengining the F-35 by pointing out that a split fleet of F135- and AETP-powered jets erodes commonality and increases sustainment costs. Bromberg also noted it is not clear the third-stream technology required for the AETP can be accommodated within the roughly 4-ft.-dia. engine bay of the F-35B. Now Bromberg says he is willing to support the JPO's decision if the road map determines a reengining is necessary. “If the road map indicates that they need significantly more out of the engine than the Engine Enhancement Packages can provide, we would be the first to say an AETP motor would be required,” Bromberg says. “But we think a lot of the AETP technologies will make those Engines Enhancement Packages viable.” https://aviationweek.com/ad-week/f-35-propulsion-upgrade-moves-forward-despite-uncertainty

  • Lockheed Martin, General Atomics, Boeing compete for laser-armed drone

    September 5, 2018 | International, Aerospace

    Lockheed Martin, General Atomics, Boeing compete for laser-armed drone

    By Stephen Carlson Sept. 4 (UPI) -- Lockheed Martin, General Atomics and Boeing have received contract modifications for drone-mounted Low Power Laser Demonstrator system missile defense testing. Lockheed Martin's contract has increased to a total value of $37.7 million, while General Atomics and Boeing's have been increased to $34 million and $29.4 million respectively, the Department of Defense announced on Friday. Work for all three companies will take place in various locations across the United States. The contract modifications come from the Missile Defense Agency and can extend as far as July 2019. Specifications listed include a flight altitude of at least 63,000 feet, the endurance to stay on station for at least 36 hours after a transit of 1,900 miles, and a cruising speed of up to Mach .46 while patrolling its station. The aircraft needs to be able to carry a payload between 5,000 and 12,500 pounds and sufficient power generation to operate a 140 kilowatt laser, with the possibility of up to 280 kw or more. The system must also be able to operate the laser for at least 30 minutes without affecting flight performance, and be capable of carrying a one- to two-meter optical system for the laser. The Missile Defense Agency is responsible for the defense of U.S. territory and its allies from ballistic missile threats. It coordinates a network of land-based and ship-based missile interceptors, along with radars and satellites to detect and destroy enemy ballistic missiles. ICBMs are at their most vulnerable during their boost phase. A UAV capable of targeting them before they exit the atmosphere would greatly increase the possibility of intercept, the Pentagon said. https://www.upi.com/Defense-News/2018/09/04/Lockheed-Martin-General-Atomics-Boeing-compete-for-laser-armed-drone/9251536091266/

  • Japan names contractor to build its future fighter jet

    November 2, 2020 | International, Aerospace

    Japan names contractor to build its future fighter jet

    By: Mike Yeo MELBOURNE, Australia — Japan has named Mitsubishi Heavy Industries as the prime contractor to build its next-generation fighter jet, with the Defense Ministry announcing earlier Friday that it signed a contract with the company. “We will steadily proceed with the development of the next fighter (F-X) together with the company,” the ministry said in a brief statement posted on it website. Local media is reporting Defense Minister Nobuo Kishi said the country will select an overseas partner by the end of this year for collaboration on aircraft technology, with stealth technology being one area of focus. The selection of MHI as the prime contractor for the F-X program comes as little surprise, given Japan was determined to restart its indigenous fighter aircraft capabilities. The company is the only one in Japan with experience in this area. The firm took the 21st spot on Defense News' most recent ranking of the top 100 defense companies in the world. Reuters previously reported the contract for the aircraft is worth up to $40 billion. Defense News emailed the Defense Ministry's Acquisition, Technology and Logistics Agency for an update on the contract value but did not receive a response by press time. The Defense Ministry is also seeking more funding for F-X research and development in its latest budget request submitted to the country's Finance Ministry in late September. The Defense Ministry requested $555.8 million for the main program and an additional $113.6 million for R&D of fighter subsystems, such as radars and mission systems integration. The funding will allow Japan to continue its R&D work into fighter technology, which it has kept up over the past decade despite the end of production on the Mitsubishi F-2 fighter jet and the decision to buy the Lockheed Martin F-35. Work the country plans to continue includes the development and refinement of stealth designs and materials, active electronically scanned array radars, and afterburning turbofan engines. Toward that end, local engine manufacturer IHI is expected to continue work on its XF9-1 afterburning turbofan. Japan conducted a series of test flights of a locally designed and built fighter technology demonstrator from 2016 to 2018 to validate its work. The country used the data gleaned from the test program to further refine its indigenous capabilities. The ministry previously said it wants to launch the basic design process for the F-X airframe and engine before the end of the current Japanese fiscal year, which ends March 31, 2021. This would be followed by the production of the first prototype, which is planned to begin in 2024, with flight tests earmarked to start in 2028 following finalization of the design and production plans. Japan plans to replace its fleet of approximately 90 F-2 jets with the new fighter jet starting around 2035. The F-2 was developed in conjunction with Lockheed in the 1990s, and resembles a larger version of the American company's F-16 multirole fighter but is primarily equipped with indigenous systems. Japan also plans to acquire 147 F-35s, which will include 42 of the short-takeoff-and-vertical-landing variants. That version, the F-35B, will operate from a pair of helicopter destroyers currently undergoing modifications to handle the jet. Japan also recently selected Boeing to upgrade 98 of its license-built Mitsubishi F-15J/DJ Eagle interceptors that will see the jets fitted with newer radars and integrated with standoff land-attack missiles. https://www.defensenews.com/industry/2020/10/30/japan-names-contractor-to-build-its-future-fighter-jet/

All news