Back to news

October 31, 2019 | International, Aerospace

As Era Of Laser Weapons Dawns, Tech Challenges Remain

Steve Trimble

As the U.S. Air Force comes within weeks of the first operational laser weapons, the Defense Department is hatching new concepts to address the power and thermal management limits of the state-of-the-art in the directed energy field.

In a largely secret dress rehearsal staged last week at Fort Sill, Oklahoma, the Air Force performed another round of tests of the deploying Raytheon High Energy Laser Weapon System (HEL-WS), as well as other directed energy options, such as the Air Force Research Laboratory's Tactical High Power Microwave Operational Responder (THOR), says Kelly Hammett, director of AFRL's Directed Energy Directorate.

“All I can say is there were multiple systems. From my reading of the reports, it looked like a very successful exercise,” says Hammett, who addressed the Association of Old Crows annual symposium Oct. 29.

The Fort Sill experiment was intended to put the weapons through their paces in a realistic operational environment. AFRL's Strategic Development, Planning and Experimentation (SDPE, which, despite its spelling, is pronounced “Speedy”) office called on the HEL-WS and THOR to engage swarms of small unmanned aircraft systems (UAS). The experiments also demonstrated new diagnostic tools, allowing AFRL testers to understand the atmosphere's effect on energy propagation in real time.

SDPE awarded Raytheon a contract in August to deliver a “handful” of systems to the Air Force for a one-year deployment scheduled to conclude in November 2020. The HEL-WS will be used to defend Air Force bases from attacks by swarming, small UAS and cruise missiles, Hammett says. The Air Force is not releasing the location of the deployed sites for the HEL-WS.

AFRL also is grooming THOR for an operational debut. Instead of blasting a UAS with a high-energy optical beam, THOR sends powerful pulses of radio frequency energy at a target to disable its electronics. Hammett describes THOR as a second-generation directed energy weapon. It is designed to be rugged for operational duty and compact enough to be transported inside a single container loaded into a Lockheed Martin C-130. Upon unloading from the aircraft, THOR can be activated within a couple hours, or broken down and moved within the same period, he says.

Despite decades of basic research on directed energy systems, such operational capabilities have evolved fairly rapidly. The Air Force finally consolidated its strategy for developing directed energy weapons in the 2017 flight plan, Hemmett said. The document narrowed a once-fragmented research organization that attempted to address too many missions.

“Directed energy zealots like myself have been blamed, rightly so, of saying directed energy can do almost anything you want it to do. And we pursued multiple applications to the effect that we were diffusing some of our efforts,” he says.

The 2017 flight plan selected three initial use cases: Air base defense, precision strike and self-protect.

The HEL-WS and THOR are addressing the first mission. The Joint Navy-Air Force High Power Electromagnetic Non-Kinetic Strike (Hijenks) program is developing a missile to address the precision strike requirement, as a follow-on to the Counter-electronics High Power Microwave Advanced Missile Project (Champ) that concluded five years ago. In the long-term, AFRL also plans to demonstrate the Self-Protect High Energy Laser Demonstrator (Shield), a podded defensive weapon for aircraft.

Although such technology has come far, researchers are still grappling with fundamental issues to make them practical. Namely, the power generation and thermal management requirement for high-energy lasers and high-power microwaves remains a challenge.

“If you're willing to have very limited duty-cycle, very limited magazine, the power and thermal management aren't very challenging,” Hemmett says. “Of course, that's not what we want from directed energy weapons. We want deep magazines. We want to be able to handle wave attacks as favorably or more favorably that kinetic weapons.”

The “rule of thumb” for a high-energy laser is an efficiency of about one-third, meaning a 300-kW generator is necessary to create a 100-kW laser beam, resulting in 200 kW of waste heat that must be dealt with in some way, says Frank Peterkin, a senior technologist on directed energy for the U.S. Navy who spoke at the same event. On Navy ships, that puts the laser in competition with the electronic warfare and radar subsystems for power and thermal management loads, he adds.

“The challenge for the directed energy community is we don't really own the solution,” Peterkin says. “It does need to be a more holistic solution for the Navy. We are a customer, but we're not driving the solution, per se.”

Although directed energy researchers cannot design the power grids for bases, ships and aircraft, they can help the requirement in other ways, says Lawrence Grimes, director of the Directed Energy Joint Transition Office within the Defense, Research and Engineering directorate of the Office of the Secretary of Defense.

The development of special amplifier diodes for fiber optic lasers are breaking the “rule of thumb” for high-energy systems, Grimes says. “They actually operate at higher temperatures and higher efficiency, so they can reduce the requirement necessary for the prime power and thermal management, and we're not throwing away 200 kW.”

Other Defense Department organizations are pursuing more ambitious options. The Strategic Capabilities Office is selecting suppliers to demonstrate small, 10 MW-size nuclear reactors, as a power generation option for directed energy weapons at austere forward operating bases.

Meanwhile, AFRL also is considering space-based power generation. Under the Space Solar Power Incremental Demonstrations and Research program, AFRL will investigate using high-efficiency solar cells on a spacecraft to absorb the solar energy. The spacecraft then would convert the solar energy into a radio frequency transmission and beam it to a base to supply energy. AFRL has awarded Northrop Grumman a $100 million contract to begin developing the technology.

If those seem like long-term options, the Air Force is not immediately concerned. The HEL-WS and THOR are designed to use “wall-plug” power or the military's standard electric generators, Hammett says.

https://aviationweek.com/defense/era-laser-weapons-dawns-tech-challenges-remain

On the same subject

  • U.S. Army Awards $6.07 Billion Contract to Lockheed Martin for PAC-3 MSE Production, Associated Equipment

    May 6, 2020 | International, Land

    U.S. Army Awards $6.07 Billion Contract to Lockheed Martin for PAC-3 MSE Production, Associated Equipment

    Dallas, April 30, 2020 /PRNewswire/ - Lockheed Martin (NYSE: LMT) received a $6.07 billion contract from the U.S. Army for the production of Patriot Advanced Capability-3 (PAC-3) Missile Segment Enhancement (MSE) interceptors and associated equipment, to be delivered across FY21, FY22 and FY23 contract years. The contract calls for the production and delivery of PAC-3 MSE interceptors, launcher modification kits, associated equipment and non-recurring efforts to support the United States and global customers. "This contract demonstrates our customer's continued confidence in our ability to deliver unmatched Hit-to-Kill technology that defeats the ever-expanding global threats of today and tomorrow," said Scott Arnold, vice president, Integrated Air & Missile Defense at Lockheed Martin Missiles and Fire Control. "PAC-3 MSE is one of the most capable multi-mission interceptors, enabling our customers to defend against advanced tactical ballistic missiles, cruise missiles and aircraft." To meet customer demand and increase production capacity, Lockheed Martin is currently building an 85,000-square-foot expansion at the Camden, Arkansas, facility where PAC-3 MSE interceptors are assembled. The building is expected to be complete by fourth quarter 2021, with operations beginning in first quarter 2022. Ten nations - the United States, Qatar, Japan, Romania, Poland, the United Arab Emirates, Sweden, Korea, Bahrain and Germany - have signed agreements to procure PAC-3 MSE interceptors. For additional information, visit our website. About Lockheed Martin Headquartered in Bethesda, Maryland, Lockheed Martin is a global security and aerospace company that employs approximately 110,000 people worldwide and is principally engaged in the research, design, development, manufacture, integration and sustainment of advanced technology systems, products and services. View original content to download multimedia:http://www.prnewswire.com/news-releases/us-army-awards-6-07-billion-contract-to-lockheed-martin-for-pac-3-mse-production-associated-equipment-301050685.html SOURCE Lockheed Martin

  • Lockheed, AIM Norway to establish F-16 sustainment hub in Norway

    March 20, 2019 | International, Aerospace

    Lockheed, AIM Norway to establish F-16 sustainment hub in Norway

    The companies on Tuesday announced a deal to create the first Lockheed-licensed F-16 Falcon Debot in Kjeller, Norway, to support the global F-16 fleet. March 12 (UPI) -- Lockheed Martin will establish its first F-16 Falcon Depot in the world in Norway with government-owned AIM Norway. Sustainment services will be provided for the Royal Norwegian Air Force and other regional F-16 customers, Lockheed Martin said in a news release Tuesday. Full article: https://www.upi.com/Defense-News/2019/03/12/Lockheed-AIM-Norway-to-establish-F-16-sustainment-hub-in-Norway/2501552403028/

  • MELLS guided missile for the German Infantry

    November 27, 2019 | International, Land

    MELLS guided missile for the German Infantry

    26 Nov 2019 Rheinmetall and its joint venture partners Diehl Defence and Rafael have won an order to supply the Bundeswehr with the advanced MELLS antitank guided missile. Rheinmetall is tasked with supplying key components to Eurospike, the company that manufactures the MELLS multirole lightweight guided missile system. For Rheinmetall, this represents an order intake of over €30 million without valued added tax. Delivery begins in 2020 and continues through to 2023. A framework agreement contains an option for the fabrication and delivery of around 100 additional weapon systems and a five-figure number of component sets for the MELLS guided missile during the 2024-2031 timeframe. This would mean incoming orders for Rheinmetall in the three-digit million-euro range. The MELLS missiles now ordered by the Bundeswehr are intended for infantry operations. Rheinmetall will be supplying over a hundred integrated command and launch units, including transport and storage containers, as well as 1,500 sets with components for the long-range Spike LR missile produced by Rafael. Produced by Eurospike – a joint venture of Rheinmetall, Diehl Defence and Rafael – the MELLS is a state-of-the-art effector capable of engaging armoured targets at ranges of up to 4,000 metres. Rheinmetall can point to abundant expertise and experience with the MELLS. The Düsseldorf, Germany-based company has already integrated this advanced missile system into the Marder infantry fighting vehicle, and is doing so again in the Puma IFV. In addition, another contractor is currently integrating the system into Rheinmetall's air-portable Wiesel/Wiesel weapons carrier. Looking ahead, more extensive networking of the command and launch units and guided missiles with Rheinmetall-made soldier systems like the Future Soldier – Expanded System (IdZ-ES) and the TacNet battle management system offers significant future potential, which will further optimize the sensor-to-shooter sequence. RHEINMETALL AG Corporate Sector Defence Press and Information Oliver Hoffmann Rheinmetall Platz 1 40476 Düsseldorf Germany Phone: +49 211 473-4748 Fax: +49 211 473-4157 View source version on Rheinmetall AG: https://www.rheinmetall-defence.com/en/rheinmetall_defence/public_relations/news/latest_news/index_22144.php

All news