Back to news

October 8, 2020 | International, Land, C4ISR

Army Seeks Electric Scout By 2025

The Light Reconnaissance Vehicle, an off-road truck to scout ahead of airborne and light infantry units, could lead the Army's move to electric motors. But electrifying heavy cargo trucks, let alone tanks, could take decades.

WASHINGTON: The Army will brief interested companies Oct. 20 on an electric-drive version of the long-delayed Light Reconnaissance Vehicle and the service's emerging strategy to convert its gas-guzzling formations to electric power.

The service is working with a non-profit consortium of more than 200 companies and universities developing clean transportation technologies, CALSTART. But the driving logic here is pure Army green, not eco-friendliness. Tactically, electric vehicles accelerate quicker, run cooler, and move quieter than internal combustion ones – advantages that are all especially valuable for stealthy scouts like LRV. They can also run power-hungry high-tech systems, from sensors to lasers, without needing a bulky auxiliary power unit.

Logistically, even if the Army has to recharge its electric vehicles from diesel generators, that would actually get more miles per gallon than putting the same fuel directly into an internal combustion vehicle, because electric motors are much more efficient. So electric power could reduce dependence on long supply lines and vulnerable convoys of tanker trucks, which are prime targets for adversaries ranging from Taliban irregulars to Russian missiles. Army and NATO wargames have shown some alarming vulnerabilities in the fuel supply.

What's the timeline? “We'd like to see an Electric Light Reconnaissance Vehicle by FY25,” said Maj. Ryan Ressler, who's leading the effort for Army Futures Command. But electrifying the Army's whole fleet of wheeled vehicles – let alone its heavier tracked vehicles – may take decades, starting with light trucks and gradually working up to heavy armor.

“You're not going to go straight to an all-electric [fleet]. The battery density is not there for your combat vehicles,” Ressler told me – at least, not yet.

“We would like to see all electric vehicles by 2040,” he said. “There might be potential to have all electric vehicles in the near term, if industry can help.” The Oct. 20 industry day will be the first step toward finding out.

From Light to Heavy

Ressler hopes to have a formal Abbreviated Capabilities Development Document (ACDD) for ELRV approved “in a matter of months,” he told me. “We see this as the first electrified vehicle for the Army ground combat fleet.”

Industry feedback on ELRV – and progress on development, if the program goes ahead – will then inform the long-term strategy for Tactical and Combat Vehicle Electrification across the wider fleet. Ressler's team is now drafting what's called an Initial Capabilities Document for TaCVE.

To test those concepts out in practice, he added, “we're looking at other potential candidates for electrification right now.” High on that list is the Infantry Squad Vehicle (ISV) being built by GM Defense, an air-droppable light truck designed to carry airborne troops from their drop sites to the objective. Electric vehicles' innate stealth and reduced dependence on fuel supply would be particularly valuable to paratroopers, who operate on the ragged end of long supply lines.

There's already been work done on an electric Infantry Squad Vehicle. “An electric prototype representative of the ISV proved it could be whisper-quiet, achieve sprint speed immediately, and offered excess power for extended silent watch mode exceeding current objectives,” according to an Army Futures Command white paper.

LRV and ISV are natural partners. The Light Reconnaissance Vehicle was intended to scout ahead of the vulnerable Infantry Squad Vehicles, helping the unarmored transports avoid a lethal ambush. But the Army decided to delay a purpose-built LRV and use the heavier Joint Light Tactical Vehicle (JLTV) as a stopgap scout. So it looks like LRV may have a second chance at life.

ISV and LRV are both ultralight vehicles, meant to support airborne troops and other light infantry units that can deploy rapidly by air but after that mostly maneuver on foot. But even light infantry brigades have a small fleet of heavy trucks to carry supplies and special equipment. Mechanized units have a host of armored vehicles – 8×8 wheeled Strykers for medium brigades; tracked tanks, howitzers, missile launchers, and troop carriers for heavy brigades – followed by an even larger number of trucks to carry fuel, spare parts, supplies, and other support. There's already been some progress with these heavier vehicles.

BAE Systems is developing an experimental hybrid diesel-electric engine for the M2 Bradley troop carrier. BAE's experimented with hybrid-electric armored vehicles for decades, company exec Andrew Rosenfeld told me – they once built a hybrid as heavy as an M1 Abrams tank – but the company's recent boom in civilian hybrid-electric buses has advanced the state of the art. Their engine for the Bradley can move up to 45 tons, and the same basic design could scale larger or smaller to go in a wide range of other vehicles. The hybrid Bradley uses 10 to 20 percent less fuel during a normal mission, he told me, and it can generate 500 kilowatts of power, enough to run an Army field hospital.

On the wheeled side, the Army's Ground Vehicle Systems Center (GVSC, formerly TARDEC) converted an Oshkosh cargo truck, the four-axle M977 HEMTT, to hybrid electric drive for a 2019 demonstration. That Tactical Vehicle Electrification Kit cut the HEMTT's fuel consumption by 15-25 percent, according to the Army Futures Command white paper. TVEK also tripled the truck's capacity to generate power.

Increased power generation not only allows an electrified vehicle to have more technology on board, like sensors and weapons. Such vehicles could also park, plug in, and power up soldiers' charging kits, field hospitals, command posts, or radar sites – potentially replacing traditional diesel generators.

“The very concept of what constitutes a vehicle has changed,” the white paper argued. “Electrification has transformed vehicles into sensor platforms, communication nodes, and mobile computational hubs.”

Just as the F-35 fighter is so full of electronics that a former Air Force Chief of Staff called it “a computer that happens to fly,” electrified ground vehicles could become computers that happen to drive – and not just computers, but mobile charging stations as well. Today's complex and vulnerable supply chain must move large amounts of fuel from refinery to tanker to forward depot to individual vehicles and generators. A future system could be much more decentralized, supplying smaller amounts of fuel to hybrid-electric vehicles, which could then generate power to share with all-electric ones.

Such streamlined logistics could make a life-or-death difference in wartime. The Army's concept for future combat, Multi-Domain Operations, calls for individual brigades to operate up to seven days without stopping for resupply. That's unimaginable today. Improving fuel-efficiency of internal combustion engines would make for only “marginal” progress towards the goal, the white paper argued. Truly self-sufficient combat units will require largescale replacement of fossil fuel with electricity, potentially drawn from small, mobile nuclear reactors.

“It's fundamental to Multi-Domain Operations,” argued retired Lt. Gen. Eric Wesley, who commissioned the white paper when he was Futures & Concepts Center chief for Army Futures Command. He just took on a private-sector job with Flyer Defense, a maker of lightweight off-road trucks that's now developing an electric-drive vehicle with a small, built-in diesel generator to recharge itself. (This isn't a hybrid-electric drive, since the diesel doesn't' drive the wheels; it just charges the batteries).

“Moving energy on the battlefield is the biggest challenge commanders will have in the future,” Wesley told me. But if you electrify your vehicle, he argued, it can “become more than just a combat vehicle: It becomes an energy node [in] a distribution network, where every vehicle is part of your energy distribution plan.”

Such a decentralized and flexible system, he argues, is much harder for a Russian missile strike to take out than a fuel depot.

https://breakingdefense.com/2020/10/army-seeks-electric-scout-by-2025/

On the same subject

  • SPECTO Aerospace wins NATO contract

    June 3, 2020 | International, Aerospace

    SPECTO Aerospace wins NATO contract

    June 2, 2020 - The NATO Support and Procurement Agency (NSPA) awards SPECTO Aerospace a three years contract for the provision of rotor blade repair services to support NATO nations' AH-64 helicopter fleets. SPECTO, located at the Royal Netherlands Air Force (RNLAF) base in Woensdrecht The Netherlands, is specialized in the maintenance and repair of civil and military helicopter rotor blades. The military Part 145 approval for the RNLAF includes the NH-90, AS-532, CH-47 and AH-64 helicopter types. Furthermore Boeing authorized SPECTO for rotor blade maintenance of the Chinook and Apache helicopters. The workshop of SPECTO at the RNLAF base is fully equipped for the overhaul of rotor blades, including painting, static balancing and release to service (EASA/FAA Form1 / Def Form 1). About NATO Support and Procurement Agency (NSPA): The NATO Support and Procurement Agency (NSPA) brings together in a single organization, acquisition, logistic, medical and infrastructural capabilities, operational and systems support and services to the NATO nations, NATO Military Authorities and partner nations. As NATO's primary enabler, the Agency's mission is to provide effective and cost-efficient multinational solutions to its stakeholders. About SPECTO: SPECTO Aerospace specializes in composite and sheet metal repair services for primary and secondary Fixed & Rotary wing aircraft components. The company has two state-of-the-art maintenance facilities, focusing on Rotor Blades for helicopters at Woensdrecht Air Base and Radomes, Flight Control Surfaces, Nacelle- and Structure parts for fixed wing aircraft at Amsterdam Lelystad Airport. SPECTO is an EASA/FAA/TCCA/MAA-Part 145 repair station and certified according to AS9100, AS9110 and ISO9001. View source version on SPECTO Aerospace: https://www.spectoaerospace.com/specto-aerospace-wins-nato-contract/l72c3

  • Ukraine's latest weapons request includes THAAD air defenses and F-18s | Reuters

    December 6, 2023 | International, Land

    Ukraine's latest weapons request includes THAAD air defenses and F-18s | Reuters

    Ukraine's latest list of U.S. weapons it says it needs to fight the Russian military includes sophisticated air defense systems, F-18 "Hornet" fighter jets, drones, Apache and Blackhawk helicopters, according to documents seen by Reuters.

  • Ottawa awards $72.6M contract for Halifax-class frigate maintenance to Irving company

    July 6, 2020 | International, Naval

    Ottawa awards $72.6M contract for Halifax-class frigate maintenance to Irving company

    By Alexander Quon Global News Posted June 29, 2020 7:30 pm The Government of Canada has awarded a six-year, $72.6-million contract to a Halifax-based company for the maintenance of the Royal Canadian Navy's Halifax-class frigates. Ottawa announced the decision to award the contract to Fleetway Inc., a company of J.D. Irving Ltd., on Monday. The contract, award as part of the National Shipbuilding Strategy, can be extended up to 22 years for a total of up to $552 million. It will support 140 jobs in the region and is meant to ensure the Halifax-class frigates remain operational until the construction of the Canadian Surface Combatant vessels is complete, expected in the early 2040s. “Our Halifax-class frigates remain the backbone of our Navy, enabling us to maintain our presence at sea both at home and abroad,” said Vice-Admiral Art McDonald, Commander of the Royal Canadian Navy, in a press release. “As we continue to transition to our future fleet, it is essential that we continue to foster an environment that enables the (Royal Canadian Navy) to keep our frigates floating, moving, and fighting.” The contract will provide a “full range of technical data management and systems engineering support services” for the 12 vessels used by the Royal Canadian Navy. Fleetway will be expected to secure a team of workers that will store and manage thousands of critical ship documents, ensuring that key information is up to date to support maintenance teams, the federal government said in a press release. “By investing in our fleet of Halifax class frigates, we will be able to provide our members in uniform what they need to continue advancing peace and security around the world,” said National Defence Minister Harjit Sajjan in a press release. Work for the contract began earlier this year and it will replace an existing contract provided by Fleetway Inc., which will expire in October 2020. The new contract was awarded through the federal procurement process. Irving Shipbuilding, another company based in Halifax and owned by J.D. Irving, has been awarded the contract to build the 15 Canadian Surface Combatant vessels that will replace the 12 Halifax-class frigates and the three already-retired Iroquois-class destroyers. https://globalnews.ca/news/7122823/ottawa-awards-contract-irving-company/

All news