Back to news

December 31, 2018 | International, Aerospace

Air Force looks to use fleet’s largest cargo plane for medical evacuations

By WYATT OLSON | STARS AND STRIPES

The Air Force is moving ahead to certify the cargo hold of its largest plane, the C-5M Super Galaxy, for use in medical evacuations for both casualties of war and victims of natural disasters.

Nearly as long as a football field, the Super Galaxy has significantly more capacity than the C-17, the largest aircraft used by the Air Force for aeromedical evacuations in the cargo area.

The Super Galaxy is certified for such evacuations using its passenger area, not its cargo hold.

This month, the Air Force completed a two-year initiative to prepare, equip and test the Super Galaxy for the broader certification.

Its cargo floor can accommodate 89 unstacked litters, twice as many as the C-17, which can fit 48 unstacked litters, according to a statement provided to Stars and Stripes by the Air Mobility Command. A C-130 can move only 15 patients on its cargo floor.

A final proof-of-concept test for the Super Galaxy was recently successfully completed at Scott Air Force Base, Ill., and certification to support aeromedical evacuations could come as early as this summer.

About 100 personnel were involved in the culminating test, with the C-5M and crew flying in from Travis Air Force Base, Calif.

For the purposes of certification, the Super Galaxy was configured with a proprietary litter-stacking system that reduces the maximum number of stretchers its bare cargo area could hold.

Under this configuration, the Super Galaxy “can safely move 244 ambulatory patients and has space for 40 litters,” Air Mobility Command said.

The aeromedical evacuation squadron brought aboard its standard in-flight kits used for medical care, and a transportable galley and lavatory were also added.

The Super Galaxy can carry a payload of nearly 135 tons, with enough cargo space to carry, say, two tanks, 16 Humvees and three Black Hawk helicopters. Without cargo, it has a range of 7,000 miles without the need for refueling.

The Super Galaxy is an upgraded version of the legacy C-5, which was introduced in the 1960s. Its more powerful engines provide more thrust, shorter takeoffs and longer range.

Full article: https://www.stripes.com/news/us/air-force-looks-to-use-fleet-s-largest-cargo-plane-for-medical-evacuations-1.562170

On the same subject

  • Holmes Lays Out ‘Fighter-Like’ Roadmap

    March 2, 2020 | International, Aerospace

    Holmes Lays Out ‘Fighter-Like’ Roadmap

    By John A. Tirpak ORLANDO, Fla.—Air Combat Command is shifting from a “fighter roadmap” to a “capabilities” roadmap that will capture many of the things fighters do today, but likely with new types of unmanned systems and “attritable” aircraft, Air Combat Command boss Gen. Mike Holmes said Feb. 27. Speaking with reporters at an AFA Air Warfare Symposium press conference, Holmes said ACC is grappling with “what is a fighter?” in the future. The fighter mission will give way to “attritable” aircraft and “loyal wingmen” unmanned aircraft, in addition to fighters, and possibly different kinds of manned aircraft. The roadmap will be very much dependent on the theaters in which the assets will be used. “What I would rather build is a capabilities roadmap that shows how we're going to accomplish the missions for the Air Force that we traditionally have done with fighters,” Holmes said. “And the subtlety there is, I would hope, 30 years from now, I'm not still trying to maintain 55 fighter squadrons. I think we will have advanced and there will be some other things that we'll be cutting-in.” The roadmap is in roughly five-year stages, which parallel “natural decision points” affecting chunks of the fleet, Holmes explained. The first stage seeks a replacement for the F-15C fleet, which is now aging out of the inventory. Those aircraft will be replaced by F-35s and the new F-15EXs, Holmes reported. The EXs are needed to reduce the overall age of the fighter fleet “so we can afford to sustain it,” he said, noting the EX is “what's available to us now.” The next stage “will be what we call the pre-block F-16s—the Block 25 and 30 Fighting Falcons—that we're still flying.” Within the next eight years, “depending on budgets and capabilities, we'll have to decide what we'll do about those airplanes,” Holmes said. There is an “opportunity” to cut-in “something new: low cost, attritable [aircraft], loyal wingmen, various things we're ... experimenting with.” After that, ACC will confront “the post-Block F-16s—the Block 40s and 50s—that can fly for quite a bit longer, but there is a modernization bill that would have to be spent to keep them useful,” Holmes said, suggesting further service life extension for the F-16 may be coming. Gen. Arnold Bunch, commander of Air Force Materiel Command, said the F-16 post-block fleet could be extended for as much as another 10 years of service life, starting in the mid-20s. A SLEP would have to focus first on making them safe to fly, he said, and they would need technology insertions to make them relevant, “depending on what you use them for.” The aircraft will already have Active Electronically Scanned Array radars and digital backbones, he noted. Finally, ACC is trying to decide what the Next-Generation Air Dominance system should be. “The equation and the math we use for ‘what is a fighter' still works pretty well for the European environment—the range, payload, and distance problem,” Holmes noted. But “it's not as effective a solution in the Pacific because of the distances,” and for that theater, he said, “I wouldn't expect [NGAD] to produce things that necessarily look like a traditional fighter, or in that traditional swap between range and payload that we've done.” Pacific Air Forces boss Gen. Charles Q. Brown, Jr. said in the future a family of systems approach will be more useful given the size of the area of operations and the differences in the adversary. “The family of systems provides us some level of advantage. If you're looking for a single point solution that has to be a fighter. It's the fighter, but not the information that comes off the fighter, the information the fighter gets from other platforms ... ,” Brown said. “How all that comes together will be important to support the fighter of the future, or whatever capability we have.” Holmes said Will Roper, the Air Force acquisition chief, is thinking about more low-cost “attritable” options for the Pacific, “thinking about that long-range problem, what might we come up with.” He has previously allowed that something akin to a large missileer, potentially a variant on the B-21, could be part of the mix, and ACC is also thinking about an “arsenal plane” concept. “Those discussions are going on, and they should be,” Holmes added. But “it is still ... our responsibility to the rest of the force to control the air and space on their behalf.” Roper's team is working with industry to pursue a new “digital” prototyping approach that Holmes said he's pleased with. He noted that Boeing was able to win the T-7 competition by showing it can “design and build airplanes in a different way and at a cost point nobody expected,” and “we think we have the opportunity to spread that across the other things we're doing.” He also says there is support from Capitol Hill with the approach at this stage, and ACC is working hard to share information on the future of ACC combat capabilities at “the right level” of classification. https://www.airforcemag.com/holmes-lays-out-fighter-like-roadmap/

  • DARPA Tests Advanced Chemical Sensors

    May 1, 2019 | International, C4ISR

    DARPA Tests Advanced Chemical Sensors

    DARPA's SIGMA program, which began in 2014, has demonstrated a city-scale capability for detecting radiological and nuclear threats that is now being operationally deployed. DARPA is building off this work with the SIGMA+ initiative that is focused on providing city- to region-scale detection capabilities across the full chemical, biological, radiological, nuclear, and explosive threat space. DARPA initiated a SIGMA+ pilot study last year known as ChemSIGMA to provide initial data and insights into how new chemical sensors using the existing SIGMA network would function. The chemical sensor package incorporates a chemical sensor, wind sensor and communications board into a weatherproof housing. Sensors report wind readings and real-time chemical information to a central cloud-hosted suite of fusion algorithms. “The algorithms were developed using a custom simulation engine that fuses multiple detector inputs,” said Anne Fischer, program manager in DARPA's Defense Sciences Office. “We built the algorithms based on simulant releases in a large metropolitan area – so we took existing data to build the algorithms for this network framework. With this network, we're able to use just the chemical sensor outputs and wind measurements to look at chemical threat dynamics in real time, how those chemical threats evolve over time, and threat concentration as it might move throughout an area.” In the pilot study, DARPA researchers from MIT Lincoln Laboratory, Physical Sciences Inc., and Two Six Labs, built a small network of chemical sensor packages. In partnership with the Indianapolis Metropolitan Police Department, Indianapolis Motor Speedway, and the Marion County Health Department, DARPA's performer teams deployed the network on-site at the Indianapolis Motor Speedway in late April 2018. The chemical sensor network and the data collected during events such as the 2018 Indianapolis 500 were critical to the DARPA effort, allowing the team to assess the performance of the sensors and network algorithms. These tests were conducted in an urban environment to ensure that the system could handle complex and stochastic signals from species that are ever present in a city's chemical background. Significantly, the network-level algorithm successfully improved system performance by correctly suppressing false detection events at the individual detector level. The group of DARPA researchers was also able to collect a large relevant data set and valuable user feedback that will guide ongoing system development efforts. Further testing with safe simulant/concert smoke at Indianapolis Motor Speedway, August 2018 During additional tests in August 2018, a non-hazardous chemical simulant was released in the empty Indianapolis Motor Speedway at a realistic threat rate. Concert fog was also released to serve as a visible tracer. The propagation of the visible tracer was observed in aerial photography, and ChemSIGMA sensors and algorithms determined the release location with unprecedented accuracy. The web-based ChemSIGMA interface allows the user to view alerts in real time across a variety of devices. Multiple trials were conducted over the course of several days assessing performance over a variety of meteorological conditions. Releases occurred during daytime and nighttime with a full range of wind directions and speeds. The ChemSIGMA prototype system detected all of the simulant releases and generated zero false alarms over the course of testing. Department of Defense simulant testing at Dugway Proving Ground, Utah, October 2018 “We're looking at how we might make this network more robust and more mature,” Fischer said. “For example, we implemented a network at Dugway Proving Ground as part of a DoD test for simulant releases, and have shown that the network can respond to a number of chemical simulant threats different than those used in Indianapolis, as well as built-in capabilities for mobile releases. Over the past few months, the team has used these data sets to further refine the algorithms, and plans to integrate and test them with the ChemSIGMA system in test events scheduled later this year.” The successful pilot and simulant test of the ChemSIGMA system at the Indy500 and Dugway Proving Ground provided valuable, relevant, and realistic data sets for validation and verification of the source localization and plume propagation algorithms. DARPA is currently extending the capabilities for networked chemical detection by advancing additional sensor modalities, including short-range point sensors based on techniques, such as mass spectrometry, and long-range spectroscopic systems. As these systems are further developed and matured, they will be integrated into the SIGMA+ continuous, real-time, and scalable network architecture to increase the system's capabilities for city-scale monitoring of chemical and explosive threats and threat precursors. https://www.darpa.mil/news-events/2019-04-30

  • Boeing Logistics Contract Builds on Decades of Support for Israel Apaches

    April 21, 2021 | International, Aerospace

    Boeing Logistics Contract Builds on Decades of Support for Israel Apaches

    The direct commercial sale, awarded in December 2020, is a five-year follow-on contract that builds on Boeing’s current IAF Apache support.

All news