29 avril 2019 | International, Aérospatial

US Air Force Research Laboratory Tests UAS Traffic Control System

Mike Rees

The Air Force Research Laboratory (AFRL) has announced that, in conjunction with the Ohio Unmanned Aircraft Systems Center, it will begin testing groundbreaking aviation technology at the Springfield-Beckley Municipal Airport.

The Federal Aviation Administration (FAA) recently confirmed that new technology developed in collaboration between AFRL and the State of Ohio – called SkyVision – safely, accurately, and effectively allows UAS to detect and avoid other aircraft while in flight.

The validation of this aviation technology led the FAA to grant AFRL a certificate of authorization to test defense-related drone technology without reliance on a visual observer or chase aircraft. Typically, drones can only fly within the uninterrupted line of sight of the person operating the UAS, but this special waiver allows AFRL and the Ohio UAS Center, which is part of the Ohio Department of Transportation's DriveOhio Initiative, to use SkyVision to test drones beyond the visual line of sight within a 200 square-mile parcel of unrestricted airspace near the Springfield-Beckley Municipal Airport.

“As our country steps more and more into the unmanned age of flight, this technology is on the forefront of the aviation frontier, making Ohio a critical national asset for the research and development of UAS technology,” said Ohio Governor Mike DeWine. “This also opens the door for commercial companies to work with Ohio, AFRL, and the FAA to test their own UAS-related technology using our SkyVision detection system. This is a major step in revolutionizing the transportation industry, with Ohio leading the way in aerospace, defense, and aviation innovation.”

“This is an important development in the progression of unmanned aircraft,” said Major General William Cooley, Commander of AFRL at Wright-Patterson Air Force Base. “This waiver provides the latitude to test beyond-line-of-sight keeping AFRL on the leading edge of world-class research and accelerates the delivery of technology that makes a difference to the warfighter.”

“By enabling our lower-altitude airspace for advanced modes of transportation, we'll be able to facilitate new opportunities around advanced autonomous aircraft research and development,” said Lt. Governor Husted. “This will bring investment to Ohio and solidifies Ohio's position as a world-recognized leader in aviation technology.”

Ohio's SkyVision detection system could potentially be used by the state to develop and test UAS technology to assist citizens in the event of a natural disaster or to significantly enhance the capability of search and rescue teams to find missing persons in time-critical situations. Commercial companies, such as those looking to use drones to survey damaged infrastructure or hoping to launch drone commerce operations, will also now have incentive to move to Ohio to test their own UAS technology.

VyrtX, a company based out of Dayton, is among the first companies that has committed to expand into Springfield to work with AFRL and the Ohio UAS Center. VyrtX is currently developing technology for the potential transport of organ donations between hospitals for transplant surgeries.

UAS test flights will take place at heights ranging from 1,000 feet above ground to 10,000 feet mean sea level. Air traffic control experts from the Ohio UAS Center will operate SkyVision during each flight. The SkyVision detection system is located within a mobile unit so that it can be flexibly placed in optimum positions for each flight.

“Today's announcement comes after years of hard work and collaboration among an incredible group of partners,” said Jeff Hoagland, President and CEO of the Dayton Development Coalition. “AFRL and Ohio had a bold vision to bring UAS into the national airspace for true beyond-visual-line-of-sight flight. The work done here will shape the industry for years to come.”

The State of Ohio and AFRL both invested a combined $5 million for the research and development of SkyVision.

Supported by the Ohio Department of Transportation, DriveOhio works to ensure Ohio's regulatory environment and public policies are conducive to the development of the infrastructure and technologies needed for smart mobility.

AFRL and a delegation of Ohio UAS industry experts will showcase the SkyVision system at AUVSI Xponential in Chicago.

https://www.unmannedsystemstechnology.com/2019/04/air-force-research-laboratory-tests-uas-traffic-control-system/

Sur le même sujet

  • US Navy may accelerate investments to extend some Ohio subs’ lives

    19 mai 2023 | International, Naval

    US Navy may accelerate investments to extend some Ohio subs’ lives

    The Navy is considering extending the lives of a few Ohio-class submarines in fiscal 2025 to hedge against any delays as the Columbia class is built.

  • Pentagon Seeks New SatCom Tech For ‘Fully Networked C3’

    10 mars 2020 | International, C4ISR

    Pentagon Seeks New SatCom Tech For ‘Fully Networked C3’

    "Our fully networked C3 [Command, Control, & Communications] will look completely different" from current satellites and terminals, said OSD's Doug Schroeder. By THERESA HITCHENS SATELLITE 2020: The Pentagon wants industry ideas on how to craft a “fundamentally new architecture” for command, control and communications (C3) that will allow “any user using any terminal to connect to any other user using any other terminal,” says Doug Schroeder, who oversees the effort under the Office of Research and Engineering (R&E). This kind of omnipresent, all-service connectivity across land, sea, air, and space is essential for the Pentagon's rapidly evolving of future war, known as Joint-All Domain Operations. “Our Fully Networked C3 communications will look completely different. We have a new vision. We're crafting it with the help of industry,” he said. “We're relying on very heavily on industry, starting with this Broad Agency Announcement dated March 6,” which asks for companies to submit white papers in short order. According to Schroeder, the Space Development Agency (SDA) will be the funding authority. Vendors whose short, 10 to 15 page white papers are chosen will be invited at the end of April to a Pitch Day. Winners then will be given three months to develop a proposal; contracts for prototypes will be granted 24 months later. Speaking to a relatively sparse audience here at the annual commercial satellite industry conference, Satellite 2020 — which is underway despite the threat of the COVID-19 Coronavirus — Schroeder stressed: “We are going to take our new direction from you.” The new strategy, called Fully Networked C3 (FNC3), is being spearheaded by R&E director Mike Griffin and his assistant director for FNC3, Michael Zatman. According to the BAA, the first issued under the effort, the new strategy is being designed to “enable the DoD to reliably communicate with all its tactical and strategic assets.” C3 is one of Griffin's Top Ten areas of technology innovation for which DoD is developing an agency-wide development strategy. Specifically, DoD now is looking for “Beyond-Line-Of-Site (BLOS) communications systems for airborne, surface, and subsurface systems that is [sic] compatible with both FNC3 enabled systems and legacy systems,” the BAA states. The BAA calls for White Papers to be submitted by March 30 for three different types of BLOS technologies: 1. Protected Radio Frequency (RF) BLOS Communications. 2. Multi-User/Multi-Point High-Data-Rate Laser Communications. 3. Communications with submerged assets. R&E intends to “develop, prototype, and demonstrate each innovative communications capability with the goal of transitioning the technologies into programs of record,” the BAA said. To ensure speedy results, DoD will use Other Transaction Authority (OTA) for prototyping (found under 10 U.S. Code § 2371b.) Much of the detail about the effort is contained in classified annexes. What we do know: Beyond-Line-Of-Sight communications relayed through satellites generally require equipping platforms — such as aircraft, ships, and ground vehicles — with high-throughput voice and data links, capabilities all of the services have expressed interest in. In particular, after years of little progress, Griffin has reinvigorated DoD interest in optical communications via laser links, in large part due to fears about Russian and Chinese RF jamming. Commercial industry has been rushing to develop optical links to enable satellite-to-satellite data transmission, and the Space Development Agency is interested in that capability for its so-called transport layer of small satellites in Low Earth Orbit. Radio-frequency communications with submarines when underwater are generally limited to terse text messages, transmitted at very low frequencies (three to 30 kilohertz) and extremely low frequencies (three to 300 hertz) and requiring very large antennas to receie them. Research work is ongoing at MIT on how to link traditional underwater sonar to airborne RF receivers, a methodology called Translational Acoustic-RF) communication. Research also is ongoing, including at MIT's Lincoln Lab, on using narrow-beam lasers to allow one underwater vehicle to communicate with another. BLOS communications can also be accomplished without using satellites. Alternative method include tropospheric scatter using microwave radiation, high frequency (HF) wireless, unmanned aerial vehicle (UAV) relays, and passive reflector systems. https://breakingdefense.com/2020/03/pentagon-seeks-new-satcom-tech-for-fully-networked-c3

  • Scholz: Germany won't deliver Eurofighters to S.Arabia in near future

    12 juillet 2023 | International, Aérospatial

    Scholz: Germany won't deliver Eurofighters to S.Arabia in near future

    Germany will not deliver Eurofighter combat aircraft to Saudi Arabia in the near future, German Chancellor Olaf Scholz said on Wednesday, after a newspaper quoted a government document as linking any such move to an end of the war in Yemen.

Toutes les nouvelles