31 octobre 2024 | International, Terrestre

UK Budget: minimal increase leaves Defence wanting

UK Defence will continue to tread water following the Labour government’s first Budget which it unveiled to the public on…

https://www.army-technology.com/news/uk-budget-minimal-increase-leaves-defence-wanting/

Sur le même sujet

  • US Navy should turn to unmanned systems to track and destroy submarines

    14 avril 2020 | International, Naval

    US Navy should turn to unmanned systems to track and destroy submarines

    By: Bryan Clark Anti-submarine warfare, or ASW, is one of a navy's most difficult missions. Sonars detect submarines with only a fraction of the range and precision possible using radars or visual sensors against ships above the water. Submarines can carry missiles able to hit targets hundreds of miles away, requiring searches to cover potentially vast areas. And the torpedoes that aircraft and surface ships use to sink submarines need to be dropped right on the submarine to have any chance of sinking it. These challenges led the Cold War-era U.S. Navy to rely on a sequential approach for tracking enemy submarines. Electronic or visual intelligence sources would report when an opposing sub was leaving port, and it would hopefully get picked up by sound surveillance, or SOSUS — sonar arrays on the sea floor — as it entered chokepoints, like that between Iceland and the United Kingdom. Patrol aircraft would then attempt to track the submarine using sonar-equipped buoys, or sonobuoys, and eventually turn it over to a U.S. nuclear attack submarine, or SSN, for long-term trail. The U.S. ASW model broke down, however, in the decades following the Cold War as U.S. submarine and patrol aircraft fleets shrank, the Chinese submarine fleet grew, and Russian submarines became quieter. Today, the U.S. Navy devotes enormous effort to tracking each modern Russian submarine in the western Atlantic. During the 2000s, the strategy of full-spectrum ASW started an essential shift in goals, from being able to sink submarines when needed to being able to defeat submarines by preventing them from accomplishing their mission. Full-spectrum ASW and other current concepts, however, still rely on aircraft, ships and submarines for sensing, tracking and attacking enemy submarines to bottle them up near their own coasts or sink them in the open ocean. Although SOSUS has improved since the Cold War and is joined by a family of new deployable seabed arrays, the next link in the U.S. ASW chain is still a P-8A Poseidon patrol aircraft, an Arleigh Burke-class guided-missile destroyer, or a U.S. SSN. These platforms are in short supply around the world, cost hundreds of millions to billions of dollars to buy and cost hundreds of thousands of dollars a day to operate. With defense budgets flattening and likely to decrease in a post-COVID-19 environment, the U.S. Navy cannot afford to continue playing “little kid soccer” in ASW, with multiple aircraft or ships converging to track and destroy submarines before they can get within missile range of targets like aircraft carriers or bases ashore. The Navy should instead increase the use of unmanned systems in ASW across the board, which cost a fraction to buy and operate compared to their manned counterparts. Unmanned aircraft could deploy sonobuoys or stationary sonar arrays, and unmanned undersea or surface vehicles could tow passive sonar arrays. Unmanned surface vehicles could also deploy low-frequency active sonars like those carried by U.S. undersea surveillance ships that can detect or drive off submarines from dozens of miles away. Although autonomous platforms will not have the onboard operators of a destroyer or patrol aircraft, improved processing is enabling small autonomous sensors to rapidly identify contacts of interest. Line-of-sight or satellite communications can connect unmanned vehicles and sensors with operators ashore or on manned ASW platforms. A significant shortfall of today's ASW concepts is “closing the kill chain” by attacking enemy submarines. Air- or surface-launched weapons have short ranges and small warheads that reduce their ability to sink a submarine, but their cost and size prevents them from being purchased and fielded in large numbers. Unmanned systems could address this shortfall in concert with a new approach to ASW that suppresses enemy submarines rather than destroying them. During World War II and the Cold War, allied navies largely kept submarines at bay through aggressive tracking and harassing attacks, or by forcing opposing SSNs to protect ballistic missile submarines. The modern version of submarine suppression would include overt sensing operations combined with frequent torpedo or depth-bomb attacks. Although unmanned vehicles frequently launch lethal weapons today under human supervision, the small weapons that would be most useful for submarine suppression could be carried in operationally relevant numbers by medium-altitude, long-endurance UAVs or medium unmanned surface vessels. Moreover, the large number and long endurance of unmanned vehicles would enable the tracking and suppressing of many submarines over a wide area at lower risk than using patrol aircraft or destroyers. Today the U.S. Navy uses unmanned systems in ASW primarily to detect submarines. To affordably conduct peacetime surveillance and effectively defeat submarines in wartime, the Navy should increase the role of unmanned systems. Using manned platforms to conduct command and control, and unmanned vehicles to track, deter and engage submarines, could significantly reduce the costs of ASW operations and enable the Navy to scale its ASW efforts to match the growing threat posed by submarine fleets. Bryan Clark is a senior fellow at the Hudson Institute. He is an expert in naval operations, electronic warfare, autonomous systems, military competitions and war gaming. https://www.defensenews.com/opinion/commentary/2020/04/13/us-navy-should-turn-to-unmanned-systems-to-track-and-destroy-submarines/

  • USAF Errantly Reveals Research On ICBM-Range Hypersonic Glide Vehicle

    19 août 2020 | International, Terrestre

    USAF Errantly Reveals Research On ICBM-Range Hypersonic Glide Vehicle

    Steve Trimble The U.S. Air Force agency that manages the service's nuclear arsenal has started researching enabling technology for an intercontinental-range, hypersonic glide vehicle (HGV), according to a document that was published briefly in error on a public website. Although the document shows a U.S. nuclear weapons agency is researching HGV technology, senior Pentagon officials say there has been no change to a policy that “strictly” limits the emerging class of hypersonic gliders and cruise missiles to non-nuclear warheads. A request for information (RFI) published on Aug. 12 by the Air Force Nuclear Weapons Center asks companies to submit ideas across seven categories of potential upgrades for intercontinental ballistic missiles (ICBMs) designed with a “modular open architecture.” The Air Force often describes the future Ground Based Strategic Deterrent ICBM as featuring a “modular systems architecture,” in contrast with the aging Minuteman III, which does not. Among the seven items on the upgrade list, the Air Force called for a new “thermal protection system that can support [a] hypersonic glide to ICBM ranges,” according to the RFI, which is no longer publicly available on the government's procurement website. The RFI appears to have disclosed information that was not meant by the Air Force's nuclear weapons buyers to be made public. Each of the seven items listed in the RFI's “scope of effort” for ICBM upgrades included a prefix designation of “U/FOUO,” a military marking for information that is unclassified, but for official-use only. Although not technically a classified secret, information marked as “FOUO” usually is withheld from the public. The RFI was removed from beta.sam.gov on Aug. 17 after Aviation Week inquired about the document with the Air Force and the Office of the Secretary of Defense (OSD). The Defense Department (DOD) has three different operational prototypes for HGVs in development now: the Air Force's AGM-183A Air-Launched Rapid Response Weapon, the Army's Long Range Hypersonic Weapon and the Navy's Intermediate Range Conventional Prompt Strike. Once fired from an aircraft, ground-launcher or submarine, all three are designed to strike targets with conventional warheads at intermediate range, which is defined as 1,500-3,000 nm by the official DOD Dictionary of Military and Associated Terms. But the Pentagon has no acknowledged plan to develop an HGV with a range beyond 3,000 nm and maintains a policy that “strictly” prohibits arming any such weapon—regardless of range—with nuclear warheads. The two-most senior staffers leading the hypersonic weapons portfolio reiterated that policy during a press conference on March 2. “Our entire hypersonic portfolio is based on delivering conventional warheads,” said Mike White, assistant director of defense research and engineering for hypersonic weapons. “Right,” agreed Mark Lewis, the director of defense research and engineering for modernization programs. “Strictly conventional.” The Pentagon has not changed the policy since March 2, said Lt. Col. Robert Carver, a spokesman for Lewis' office. “DOD is not developing nuclear-capable hypersonic weapons,” Carver said in an email. “There are common technology needs between the nuclear enterprise and hypersonic systems. Particularly in the area of high-temperature materials, we typically collaborate on the development of advanced dual-use materials technology. I will reiterate that our entire hypersonic program portfolio continues to be based on delivering conventional effects only.” Although the DOD upholds the conventional-only policy for hypersonic gliders and scramjet-powered cruise missiles, the source of the RFI raises questions, said James Acton, co-director of the Nuclear Policy Program at the Carnegie Endowment for International Peace. “The fact that [this RFI] is coming from the nuclear weapons center, it makes it sound an awful lot like this would at least be nuclear-armed or conceivably dual-capable,” Acton said. Although the RFI confirms research is underway, the DOD still has no acknowledged plan to proceed from basic research into the acquisition phase of an ICBM-range hypersonic glider, whether carrying a conventional or nuclear warhead. If the thermal-protection system technology is limited to research only, the RFI by the Air Force's nuclear weapons organization may not violate the DOD policy, which may apply only to fielded weapons. “DOD does a lot of research on a lot of different things and the vast majority of these programs never turn into an acquisition,” Acton said. “It could turn into something, but sophisticated observers recognize that it may not.” The DOD's conventional-only policy for maneuvering hypersonic weapons stands apart from other countries in the field. Russia, for example, has deployed the nuclear-armed Avangard HGV on the SS-19 ICBM. In February, the head of U.S. Northern Command, Gen. Terrence O'Shaughnessy, said in written testimony submitted to Congress that “China is testing a [nuclear-armed] intercontinental-range hypersonic glide vehicle, which is designed to fly at high speeds and low altitudes, complicating our ability to provide precise warning.” The DOD never has had an announced weapons development program for a conventional- or nuclear-armed, intercontinental-range HGV, but has experimented with air-launched gliders. The Hypersonic Test Vehicle-2 program by the DARPA attempted to demonstrate a range of 4,170 nm, but each experimental glider in two tests staged in 2010 and 2011 failed about 9 min. into a planned 30-min. hypersonic glide. The leading edges of an intercontinental-range HGV could be exposed to temperatures as high as 7,000K (6,726C) on reentry, then endure a prolonged glide phase compared to an intermediate-range system, said Christopher Combs, who researches hypersonic aerodynamics as an assistant professor at the University of Texas-San Antonio. “The bottom line is it's just crazy temperatures,” Combs said. “They're still not dealing with space shuttle or Apollo [capsule] temperatures, but it's still really hot.” The rescinded RFI, meanwhile, also may provide a rare glimpse into the Air Force's plans for the new ICBM developed under the Ground Based Strategic Deterrent (GBSD) program. Apart from the thermal-protection system for a hypersonic glider, the scope of effort in the RFI sought industry input on a variety of topics, including: • Fusing data from lower-fidelity, onboard sensors to improve guidance, navigation and control. • New navigation aids to correct inertial measurement unit drift on long-time-of-flight missions. • A lighter, smaller and more efficient “future fuze,” which also could “accept inputs from external subsystems.” • Radiation-hardening techniques for advanced microelectronics, such as a system on a chip or system in a package. • Improved computer hardware and software, including artificial intelligence algorithms. • A more secure architecture and better security sensors for ICBM ground facilities. The Air Force plans to award the contract to Northrop Grumman by the end of the month to launch the engineering and manufacturing development contract for the GBSD program. Northrop remained the sole bidder for the program to deliver more than 600 new ICBMs to the Air Force after a Boeing-led team withdrew from the competition last year. https://aviationweek.com/defense-space/missile-defense-weapons/usaf-errantly-reveals-research-icbm-range-hypersonic-glide

  • Google Chrome Adds App-Bound Encryption to Protect Cookies from Malware

    1 août 2024 | International, C4ISR, Sécurité

    Google Chrome Adds App-Bound Encryption to Protect Cookies from Malware

    Google Chrome's latest update introduces app-bound encryption, enhancing cookie protection against malware on Windows.

Toutes les nouvelles