15 septembre 2020 | International, Aérospatial

The US Air Force has built and flown a mysterious full-scale prototype of its future fighter jet

By:

WASHINGTON — The U.S. Air Force has secretly designed, built and flown at least one prototype of its enigmatic next-generation fighter jet, the service's top acquisition official confirmed to Defense News on Sept. 14.

The development is certain to shock the defense community, which last saw the first flight of an experimental fighter during the battle for the Joint Strike Fighter contract 20 years ago. With the Air Force's future fighter program still in its infancy, the rollout and successful first flight of a demonstrator was not expected for years.

“We've already built and flown a full-scale flight demonstrator in the real world, and we broke records in doing it,” Will Roper told Defense News in an exclusive interview ahead of the Air Force Association's Air, Space and Cyber Conference. “We are ready to go and build the next-generation aircraft in a way that has never happened before.”

Almost every detail about the aircraft itself will remain a mystery due to the classification of the Next Generation Air Dominance program, the Air Force's effort for fielding a family of connected air warfare systems that could include fighters, drones and other networked platforms in space or the cyber realm.

Roper declined to comment on how many prototype aircraft have been flown or which defense contractors manufactured them. He wouldn't say when or where the first flight occurred. And he refused to divulge any aspect of the aircraft's design — its mission, whether it was uncrewed or optionally crewed, whether it could fly at hypersonic speeds or if it has stealth characteristics.

Those attributes, he said, are beside the point.

The importance, Roper said, is that just a year after the service completed an analysis of alternatives, the Air Force has proven it can use cutting-edge advanced manufacturing techniques to build and test a virtual version of its next fighter — and then move to constructing a full-scale prototype and flying it with mission systems onboard.

“This is not just something that you can apply to things that are simple systems” like Boeing's T-7 Red Hawk trainer jet, the first Air Force aircraft to be built using the “holy trinity” of digital engineering, agile software development and open architecture, Roper said.

“We're going after the most complicated systems that have ever been built, and checked all the boxes with this digital technology. In fact, [we've] not just checked the boxes, [we've] demonstrated something that's truly magical.”

Now, the Next Generation Air Dominance program, or NGAD, sits at a decision point. Roper declined to say how quickly the Air Force could move its next-gen fighter into production, except to say “pretty fast.” But before the service decides to begin producing a new generation of fighters, it must determine how many aircraft it will commit to buy and when it wants to start purchasing them — all choices that could influence the fiscal 2022 budget.

The program itself has the potential to radically shake up the defense industry. Should the Air Force move to buy NGAD in the near term, it will be adding a challenger to the F-35 and F-15EX programs, potentially putting those programs at risk.

And because the advanced manufacturing techniques that are critical for building NGAD were pioneered by the commercial sector, the program could open the door for new prime contractors for the aircraft to emerge — and perhaps give SpaceX founder Elon Musk a shot at designing an F-35 competitor.

“I have to imagine there will be a lot of engineers — maybe famous ones with well-known household names with billions of dollars to invest — that will decide starting the world's greatest aircraft company to build the world's greatest aircraft with the Air Force is exactly the kind of inspiring thing they want to do as a hobby or even a main gig,” Roper said.

The disclosure of a flying full-scale fighter prototype could be just what the Air Force needs to garner more financial support from Congress during a critical time where the service is facing budget constraints and needs to gain momentum, said Mackenzie Eaglen, a defense budget analyst with the American Enterprise Institute.

“If you can quickly get to something and show progress through product, it just changes the whole dynamic for the Hill,” she said. “[Roper has] got so many headwinds, it seems this would be a likely avenue to show conceptual success for his ideas.”

A radical new acquisition

Flying a prototype of its future fighter was the easy part. Now the Air Force must choose whether to commit to a radical method of buying it.

Over the last 50 years, the U.S. industrial base has dwindled from 10 manufacturers capable of building an advanced fighter to only three defense companies: Lockheed Martin, Boeing and Northrop Grumman. The time it takes the Air Force to move a new fighter from research and development to full-rate production has stretched from a matter of years to multiple decades.

The result is that every fighter program becomes existential for companies, who fight to prove that they can meet technical requirements during the development and production phase at a lower cost than their competitors. The companies are finally able to turn a profit during the later years of a program, when they become locked in as sustainment providers with the technical knowledge necessary for upgrading, repairing and extending the life of their product — often with little congressional interest or scrutiny.

“The sustainment account is a black hole that nobody understands. The [operation and maintenance] account is a black hole that no one can figure out,” Eaglen said. “The person who can change sustainment can change the acquisition game, writ large.”

For the Air Force, the turning point is when an aircraft hits 15 years old. At that age, maintenance costs compound rapidly, growing another 3-7 percent every year, Roper wrote in a Sept. 15 document titled “Take the Red Pill: The New Digital Acquisition Reality.”

But what if instead of spending significant funds on sustaining old jets, the Air Force used that money to buy new ones?

Instead of buying a large quantity of a single fighter over decades and retaining each plane for 30 years or more — as is currently the norm — the “Digital Century Series” model, proposed by Roper, posits that advanced manufacturing and software development techniques make it possible for the Air Force to rapidly develop and buy aircraft more frequently, much as the service did during the 1950s when it bought six fighters from six companies just years apart from each other during the original Century Series.

In August, Air Force's advanced aircraft program office completed a business case analysis of the Digital Century Series model meant to validate whether the idea was technically feasible and, more importantly, whether it could save money.

Leaders found that by applying digital manufacturing and development practices — as used by the T-7 program, as well as in the development of the NGAD prototype — it could drop the total life cycle cost of a next-gen fighter by 10 percent over 30 years compared to legacy fighters like the F-35 and F-15, Roper wrote.

But for the same price as a single variant of a digitally manufactured fighter produced with a 30-year life cycle, the Air Force could buy a new fighter every eight years and replace them after 16 years — before the plane reaches the 3,500 flight-hour mark here it starts needing heavy overhauls and expensive modifications to extend its service life.

“I don't think it's smart thinking to build one and only one aircraft that has to be dominant for all missions in all cases all the time,” he said. “Digital engineering allows us to build different kinds of airplanes, and if we're really smart ... we ensure smart commonality across the fleet — common support equipment, common cockpit configurations, common interfaces, common architecture, even common components like a landing gear — that simplify the sustainment and maintenance in the field.”

The main difference is that the Air Force would flip from spending the majority of fighter program costs upfront instead of at the end of the aircraft's life. To continuously design new fighter jets, the service would keep multiple vendors constantly under contract for the development of new planes, choosing a new design about every eight years. To make a business case that is profitable for industry, it would then buy batches of about 50-80 aircraft every year.

The result is a 25 percent increase in development costs and an 18 percent increase in production costs. However, the price of modernizing aircraft would drop by 79 percent while sustainment costs are basically cut in half, Roper wrote in the paper.

“I can't make both ends of the life cycle go away; industry has to make a profit somewhere,” Roper said. “And I'm arguing in the paper that if you get to choose what color of money you use for future air superiority, make it research, development and production because it's the sharp point of the spear, not the geriatric side that consumes so much of our resources today.”

There is also a strategic benefit to continuous fighter production and development, Roper said. It puts China on the defense, having to respond to U.S. technical advances as new capabilities — whether they're hypersonic missiles or drone wingmen — are matured and spiraled into the fighter's production.

“This speeds up the pace at which we can do things so that we can be the disrupter instead of the disrupted, but it does so in a way that can't be undermined by throwing cheap labor at the problem,” he said.

The next step is for Air Force leadership to decide how much it can afford for the program in FY22 and whether it will adopt the Digital Century Series model for developing the aircraft.

“What we need to do going forward is simply understand the [Department of the Air Force's] level of financial commitment and the date they want us to charge towards for initial operations, and we can fit the acquisition strategy for [NGAD] to it, and explain how quickly we can afford to spiral and when we need to retire the aircraft to generate enough savings to afford those spirals,” he said.

“Perhaps getting to the fastest [initial fielding date] may not be the most important thing. It may be important for us to push the [technical] boundaries more. Those are decisions that I've given for leadership to think about. But every decision I've given them is a better decision over the legacy ones.”

If the Air Force is going to get financial support for a business plan that requires taxpayers to pay a higher upfront cost for fighter aircraft, it must clearly identify desired combat capabilities, said Rebecca Grant, an aerospace analyst with IRIS Independent Research.

“Now we have the F-35, F-15EX and the Digital Century Series' small batch costs,” she said. “If it's that great, maybe it's worth the upfront cost. I could argue that, for sure. Is this the new F-117, which was similar batch size at similar cost and worth every penny? We just don't know.”

On the technical side, the Air Force needs to solidify a rigorous, standardized method of conducting test activities in a virtual environment using modeling and simulation tools that can cut down the amount of time needed for live flight tests. It also needs industry to buy in to coding via a government-owned computing environment, Roper said.

“We can't have every industry partner creating their own mechanism,” Roper said. “We have to have just as rigorous a process for digital design and assembly as we do for physical design assembly. So we will own that in the government, we will certify that in the government.”

And — perhaps most critically — the Air Force will have to sell the concept to Congress. Roper has briefed staff members on the defense committees, and he held classified sessions with many of the lawmakers who sit on those panels to present findings of the business case study as well as the detailed progress of NGAD development and test activities.

“I had some tough audiences on this. I've had people that I've been told want to cut the program or they don't understand why we need it,” he acknowledged. “But I have not left a single one of those briefings with anything other than [lawmakers saying]: ‘This is the future, we ought to do it now. And why aren't we going faster?' And the answer [to] why we aren't going faster is simply money. We can push the accelerator down more today because the digital technology allows it.”

https://www.defensenews.com/breaking-news/2020/09/15/the-us-air-force-has-built-and-flown-a-mysterious-full-scale-prototype-of-its-future-fighter-jet

Sur le même sujet

  • Baltics ATACMS production underway after earlier US HIMARS deals - Army Technology

    3 juillet 2024 | International, Terrestre

    Baltics ATACMS production underway after earlier US HIMARS deals - Army Technology

    The US has begun to manufacture ATACMS missiles for the Baltics states, as well as Poland and Morocco, following deals for HIMARS launchers.

  • DISA launches cloud-based electronic warfare planning tool

    11 décembre 2023 | International, C4ISR

    DISA launches cloud-based electronic warfare planning tool

    The EMBM-J program supports the Pentagon's pursuit of seamless connectivity, known as Combined Joint All-Domain Command and Control, officials said.

  • A quiet Hunter - Navy's Future Frigate

    11 octobre 2019 | International, Naval

    A quiet Hunter - Navy's Future Frigate

    Valued at $35 billion over its program life, Navy's Future Frigate project, Sea 5000 Phase 1, is second only to Future Submarine in terms of cost to the Australian taxpayer. Navy will receive nine Hunter class frigates, built in South Australia to BAE System's Global Combat Ship (GCS) design and, although optimised for the Anti-Submarine Warfare (ASW) role, they are intended to be equally adept at Air Warfare and a number of other roles. A number of sovereign features will separate the Hunter variant of the GCS from the UK's City class ASW frigates (Type 26), including integration of CEA Technologies' new generation CEAFAR2 radar, Lockheed Martin's Aegis Combat System and an Australian tactical interface developed by Saab Australia. The program calls for steel to be cut on the first vessel in Osborne in late 2022 with the lead ship, HMAS Flinders, launched in the 2027-2028 timeframe and entering service between 2029 and 2031. The nine ships form part of the Commonwealth's Continuous Naval Shipbuilding Strategy and will be built in three flights of three vessels, to ensure the design keeps abreast of rapidly evolving technology. Completion of the last frigate is not due to occur until the early 2040s and the class will form the backbone of Navy's major surface combatant fleet for decades to come. The Hunter class will follow the Type 26 by around five years and will benefit from lessons learned during completion of at least the first two ships, before Flinders enters the water towards the end of the next decade. The GCS design has been touted as the world's most capable ASW ship and in Royal Navy service it will be the successor to the Duke class (Type 23) frigates, long regarded as the benchmark in the domain. BAE Systems has also sold the design to Canada, where it will be known as the Canadian Surface Combatant (CSC) and the family now includes no fewer than 32 ships across three of the world's leading navies, all members of the Five Eyes community. The good news for Australian taxpayers, at this early stage at least, is that Sea 5000 remains on schedule for the first steel to be cut at Osborne in 2022. Around 50 per cent of the first UK ship, HMS Glasgow, is now in production and steel was cut on the second, HMS Cardiff, in early August. Acquiring the Future Frigate The Future Frigate competition was fiercely fought by BAE Systems, with a version of the Global Combat Ship referred to within the company as GCS-A (Australia); Fincantieri, with a version of the ASW-optimised Fregata Europa Multi-Missione (FREMM) frigate in service with the Italian Navy; and Navantia, with an evolution of its F105 design (which forms the basis of Australia's Hobart class destroyers), known as the F-5000. Following the release of a Request For Tender (RFT) in March 2017 the three shipbuilders submitted bids in August 2017 and each design was then subjected to a rigorous Competitive Evaluation Process (CEP). At the RFT release, then Minister for Defence Industry Christopher Pyne made it clear that all nine frigates would be built in an Australian shipyard, using an Australian workforce. Furthermore, he stipulated each of the three shipbuilders would be required to demonstrate their ability and willingness to develop a local supply chain to support the shipbuilding enterprise. In addition, each was required to provide local industry with opportunities to bid into their existing global supply chains. From a capability standpoint, the Commonwealth mandated the CEAFAR2 radar, a next generation radar based upon the highly successful CEAFAR fitted to post Anti-Ship Missile Defence (ASMD) Anzac frigates. In October 2017 then Prime Minister Malcolm Turnbull also announced that Aegis, together with an Australian tactical interface, would be mandatory for all future major surface combatants. BAE System's GCS-A proposal was formally announced as the preferred tenderer on June 29, 2018, at which time it was also revealed the nine ships would henceforth be known as the Hunter class. The first three ships of the Hunter class will carry the names of three major Australian regions, all with strong historical maritime and naval ties. HMA Ships Flinders (II) (SA region named for explorer Captain Matthew Flinders - first circumnavigation of Australia and identified it as a continent); Hunter (NSW region named for Vice-Admiral John Hunter – first fleet Captain and 2nd Governor of NSW); and Tasman (state and sea named for explorer Abel Tasman – first known European explorer to reach Tasmania, NZ and Fiji). When announcing the GCS-A as the preferred design, then Defence Minister Marise Payne said the GCS-A design was selected because it represented the most capable ASW platform. “This is decision based entirely on capability; the best capability to equip Navy in Anti-Submarine Warfare, with range and endurance to operate either independently or as part of a task group,” she said. Payne also revealed that government-owned ASC Shipbuilding would become a subsidiary of BAE Systems during the Hunter class build program, with the Commonwealth owning a sovereign share in the entity but reverting to government ownership at the end of the project. “We were really pleased with that as an outcome, because ASC has great capability. We always wanted to use the workforce, but this allows us to join ASC and BAE together much earlier and we think that will be very positive,” explained BAE Systems' then Global Maritime Systems business development director, Nigel Stewart. “We cut steel for the first Type 26 in the UK in June 2017 and we'll cut steel for full production of the Hunter class in 2022.” On October 5, 2018, the Commonwealth signed an interim Advanced Work Arrangement (AWA), with BAE Systems Australia to enable the company to continue with workforce mobilisation activities. This contract also represented the initial step towards transitioning ASC Shipbuilding into BAE Systems for the duration of the Hunter project. The Head Contract between ASC Shipbuilding, as the prime contractor, and the Commonwealth was signed at Osborne on December 14, 2018, at which time the government estimated Sea 5000 would contribute around $17 billion to the national economy and have create over 6,300 jobs by the program's peak in 2028. Speaking in late August, Craig Lockhart, ASC Shipbuilding's managing director, said the build program is currently on track. “We're exactly where we thought we would be in the program, bang on schedule, after coming through the preferred tenderer announcement in June 2018, to achieve contract signature in December – something I believe is a gold standard in terms of negotiation between the Commonwealth and industry,” he said to ADM. “We signed the contract in December 2018 and we're really only eight months into the program, but we've mobilised very rapidly. We have over 400 people in the Hunter program right now and we have 50 people seconded to the UK Type 26 team in Glasgow, both managing the evolution of the design maturity and managing the transfer of technology from Glasgow over to ASC Shipbuilding.” Global Combat Ship heritage According to the Royal Navy, the Type 26 is designed “without compromise” to excel in the ASW role, as a successor to the Type 23 frigates. The UK Government announced in the 2015 Strategic Defence and Security Review (SDSR) that it would acquire eight ‘advanced ASW ships' and in 2017, BAE Systems was awarded a ₤3.7 billion contract for the construction of the first three ships. Plate steel for the appropriately named HMS Glasgow was cut at BAE's shipyard in Govan, on the banks of the River Clyde on July 20, 2017 and is due to enter the water in the 2019-2020 timeframe, prior to entering service in the middle of the decade. HMS Cardiff will enter the water about two years behind her sister ship and the first steel for her was cut at Govan on August 14. A UK Government decision on the second batch of five ships is expected around the time Glasgow is launched. The UK ships are 149 metres long, with a beam of 20.8 metres and displace around 6,900 tonnes. A standard crew will comprise 157 personnel, including an embarked aviation element, but the ship has enough accommodation space to embark up to 208 people. According to BAE Systems the frigate is ‘an advanced ASW warship designed for the critical protection of the Continuous At Sea Deterrent and Carrier Strike Group'. In simple terms, this translates to providing protection for the Royal Navy's nuclear submarine deterrent force (currently Vanguard and later Dreadnought class boats) and the two new 65,000-tonne Queen Elizabeth class aircraft carriers. With ASW as their primary role, signature management is a very important consideration and every component within the ship is designed with this philosophy in mind. Its primary ASW sensors will be an upgraded version of Thales' 2087 towed array low frequency active and passive sonar, which is the subject of ‘de-risking' activities aboard a Type 23 vessel, and a hull-mounted Ultra Electronics Type 2150 hull-mounted sonar system. In day to day submarine warfare operations, the ships' sonar will be combined with sensors aboard the Royal Navy's embarked AgustaWestland Merlin HMA.2 ASW helicopters. Each Type 26 ship can carry a single Merlin, but the flight deck on the stern is able to accommodate even larger helicopters, including the Boeing CH-47 Chinook heavy-lift helicopter. A large multi-purpose integrated mission bay forward of the helicopter hangar can be used for a number of roles, including carriage of small watercraft and unmanned aerial, surface or undersea vehicles. The UKs Type 26 ships will also come with a formidable air defence capability, for which the primary sensor is BAE Systems' Type 997 Artisan 3D medium-range air and surface surveillance radar. Principal effectors will be the MBDA Sea Ceptor missile defence system, launched from Mk.48 cannisters, and BAE Systems Mk.45 Mod.4 5-inch medium calibre gun, but the ships also have 24 Mk.41 Vertical Launch System (VLS) cells for other weapons. Propulsion is a combined diesel-electric or gas (CODLOG) system based around the Rolls-Royce MT30 Marine Gas Turbine. Brochure figures claim a maximum speed in excess of 27 knots and a range of more than 7,000 nautical miles in electric motor-drive. An Australian Hunter The changes to the Type 26 reference design which define the GCS-A or Hunter class are largely confined to the ship's weapons and sensor systems, including substitution of the Artisan air surveillance radar with CEAFAR2 and Aegis combat system. Other changes will include increasing the number of Mk.41 VLS cells, reconfiguration of the ship's aviation capabilities to allow embarkation of the Navy's Sikorsky MH-60R Seahawk helicopter, and the integration of Harris Corporation's Hawklink Ku-band data link, as used by US Navy major surface combatants. Australia's Hunter class ships will be easily identifiable by their unique mast configuration, which is being redesigned to take the CEAFAR radar into consideration, together with the integration of Hawklink and other sensors and communications systems. “The Artisan radar of the UK's Type 26 is different to that of Hunter, so the approach to positioning the masts with CEAFAR radar needs careful consideration. The CEAFAR radar is heavier and has a higher power requirement, so it will require a more considered integration,” explained ASC Shipbuilding's Craig Lockhart. “So, we're changing the mast structure and moving some UK-specific technology out in favour of Hawklink and other systems, which will allow Hunter to enjoy a much broader interoperability with partners and allies. “The communications masts are provided by Rohde and Schwartz and again are subject to trade studies to consider their interoperability with the Hunter configuration.” ASC Shipbuilding has created a mast working group within the integrated design team to study solutions, which may result in a different solution to mounting, structure and materials being used. Because the CEAFAR radar is significantly more powerful than Artisan, the Hunter design will also require modifications to the heating, ventilation and cooling (HVAC) and spatial management. “It produces more heat in certain modes, so it requires improved cooling management and at the same time it's heavier, so stability and displacement is being modelled,” Lockhart added. “It's well within our design parameters, but the biggest challenge will be making sure the dynamics of the ships' power system work as well as planned and we can supply enough capacity to all parts of the ship. “Whilst we're completely confident that the generating capacity is more than enough, we are making sure we model the system is such a way that we don't dilute the power supply to other parts of the platform – even when we need to operate the radar in conjunction with all the other platform and weapons systems.” Other topside changes to the basic design will include removal of the forward Sea Ceptor silo and an increase in the number of Mk.41 VLS cells from 24 to 32, which will accommodate the Raytheon RIM-162 Evolved Sea Sparrow Missile (ESSM) and Standard Missile 2 (SM-2) weapons currently used by the RAN and its US ally. Further aft, two four-cell missile launchers will be added for either the Navy's current anti-surface Boeing RGM-84 Block II weapon or, more likely, an advanced surface to surface missile which will be acquired in the future to replace the venerable Harpoon. Combat system As noted earlier, the announcement by government in October 2017 that it would mandate the Combat Management System enterprise across Navy's future major surface combatants, has resulted in Lockheed Martin being selected to supply its Aegis Combat System, with Saab Australia providing the sovereign tactical interface. Together with a common Co-operative Engagement (CEC) capability across the future fleet and standardised ESSM & SM-2 weapons, Hunter will enjoy close integration with US surface combatants. The ship's aviation facilities will also be modified to accommodate the MH-60R, which will be Navy's primary combat helicopter for many years to come. These changes include the reconfiguration of the hangar bay itself, an Aircraft Ship Integrated Secure and Traverse (ASIST) track-mounted helicopter recovery system, which is currently also being fitted to the Hobart class Air Warfare Destroyers, and changes to the ship's air weapons magazine to accommodate the MH-60Rs Mk.54 torpedo and Lockheed Martin AGM-114N Hellfire missiles. In RAN service, the standard ship's complement (with an embarked aviation element) will be 180 personnel, but the design still permits this number to grow to 208 if required. Other modifications may be required as the detailed design of the Hunter evolves to incorporate future capabilities. One example of this is the Unmanned Aerial System (UAS) being acquired under Navy's Sea 129 Phase 5 (Maritime Tactical UAS) program, which may select a fixed wing or a rotary wing platform, or maybe even both. “As we continue with the maturation of the final design process, part of our discussions with the Commonwealth – and with the various capability development groups in particular – is getting a detailed understanding of the through life upgrades they either have in the pipeline, or are considering as options,” Lockhart explained. “We are looking at what's being done in other Navy upgrade programs such as the ASMD configuration changes that have been made to the Anzac class frigates and the aviation upgrades we've just completed on the Hobart Class. All of those are being assessed against the Hunter design space and we're taking as much opportunity as we can to de-risk the build program by making sure we have enough people in the upgrade programs of other platforms that we can transfer that thinking, learning and skills across. “We're taking every opportunity to consider their relevance to Hunter, either as a design or build strategy, or as a through-life management consideration.” Build in Australia The planned drumbeat for shipbuilding at Osborne will see a little over three years between the start of work on HMAS Flinders in 2022 and that of the second ship (HMAS Hunter), reducing to two years between Hunter and the third ship (HMAS Tasman). This will progressively reduce throughout the build, resulting in an estimated gap of just 18 months between the eighth and ninth ship in the late 2030s or early 2040s. But before construction can begin, a new digitally-enabled shipyard at Osborne South has to be completed, having been built from the ground up to be (arguably) the world's most advanced naval shipbuilding facility. Construction of the new facility was announced as part of the government's continuous naval shipbuilding strategy, under a $535 million contract with Australian Naval Infrastructure (ANI) – see P44 for more on ANI. Progress on the facility is progressing to schedule and ASC Shipbuilding hopes to begin gaining access to the yard in March 2020. “I walked through the shipyard yesterday and it's coming along quickly, they were putting the last side section on the main, 50-metre high, final assembly building and then the roof structure goes on,” Lockhart said on August 28. “The key challenge is for us to get in early and integrate what I call the ‘shipyard production process' within the infrastructure. We'll get progressive access from March next year and we're on target for a successful handover in the middle of next year – and by then we'll have tested a large part of our digital production processes. “We are setting up a highly efficient, digitalised shipyard and when we get our hands on it – certainly over the next few years – we'll have the world's most advanced shipbuilding facilities.” Fully digital design The Global Combat Ship itself has now migrated to a fully digital design, which provides BAE Systems with the capability to embed all aspects of the design and supply chain, right down to single fasteners. This design is controlled from a single configuration, which is updated at midnight every night. However, this live design concept will prove a challenge in the future when the Hunter is itself a mature design and therefore achieves ‘separation' from the reference ship. This will be further exacerbated when the third variant (the Canadian Surface Combatant) reaches the threshold level of design maturity and the concept will require careful configuration management going forward. “That configuration management process is what our engineering teams are working on right now, so when something is changed on Type 26 that has a platform implication on Hunter (or CSC), how will it be updated in the parts of the design that are common and still managed that live 3D configuration?” Lockhart said. “But it's a huge step forward for design evolution (and) it's a huge step forward for BAE Systems also and I think our customers are already seeing the benefit of managing data on a real-time basis.” The Hunter design process has recently successfully achieved the Systems Readiness Requirements (SRR) milestone. Craig Lockhart said the review made 42 recommendations – fewer than the Type 26 design at a similar stage and reflecting the growing maturity of the GCS family design. “Each of the recommendation categories were things that we were already actively working on with the Commonwealth and they were all broadly related to the changes above the main deck,” he said. “Things like, how is the radar going to interface with the rest of the ship? It has a very high power consumption, so modelling the power dynamics is a key characteristic we have to get our heads around. Also, things like, how is Aegis being delivered through the Foreign Military Sales (FMS) agreement? How well will it integrate with parts of the CMS such as guns, sensors, sonar, coms etc?” The next major milestone will be a System Design Review (SDR), to be conducted in the fourth quarter of 2020 and which will be a major test of Hunter design maturity. 2020 cut steel From a manufacturing process standpoint, ASC Shipbuilding will begin the construction of five hull blocks in December 2020, as a prototyping exercise to both verify capability but, more importantly perhaps, to test the digital production process at the shipyard. The first block to be completed will be to the baseline Type 26 design which, thanks to the lead in fabrication by BAE Systems in Glasgow, can be readily quantified. The following blocks will be to the Hunter design and together they will be used to train the local workforce in South Australia, verify the skills balance and qualify the shipyard itself. “Prototyping is a reason to test the end to end process. People think that it is about just making sure we can cut steel and weld it together,” Lockhart said. “It's not. It's a test of the design itself; it's a test of the design in the supply chain, to make sure we have the materials available when we need them; It's a test that we have design guidance information that is relevant; It's a test of the ability to produce an accurate digital work order for the relevant trades; it's the ability to schedule at the right time. It really is the ability to test without the fear of it going wrong – I'd rather have it go wrong and have the ability to appraise, amend and improve through prototyping.” ASC Shipbuilding has already begun work on prototyping, long before steel is cut on the first hull block at the end of 2020 and is now actively engaged with local South Australian companies to work on the development of the digital work order process. AIC and the Australian supply chain Local industry was invited to bid for work in the prototyping phase of the Sea 5000 build program in late June, with an estimated $20 million in contracts up for grabs, but in the meantime Australian small to medium enterprises (SMEs) are already winning work supplying components and services to BAE System's GCS supply chain. On July 9 for example, Defence Minister Linda Reynolds used a visit to BAE System's Govan shipyard to announce that Adelaide-based Airspeed had become the latest Australian SME to win work on the GCS program. Airspeed will provide the Replenishment At Sea (RAS) ‘stump mast' for the Royal Navy's first three ships between now and 2023. Minister Reynolds noted that Airspeed was the second supplier from South Australia to join a number of Australian companies already working on the program, including CBG Systems (Moonraker), Electro Optic Systems, Liferaft Systems Australia, Mackay Consolidated Rubber, Rowlands Metalworks and prime, Thales Australia. BAE Systems has broken the supply chain down into four categories: Categories A & B are large subsystems, such as propulsion systems, drive train, shaft line etc; Category C covers the supply of smaller components such as pumps and valves, pipes and fittings; and Category D covers the supply of services, such as paint, scaffolding etc. “We have hard targets for Categories C & D to maximise what is delivered from the Australian supply chain component, but equally we are working with Category A & B suppliers to provide opportunities, with some notable successes,” Lockhart explained. “We're working with companies including Rolls-Royce, MTU, Penske Power Systems etc. to bring work onshore to Australia. We're working hard with Rolls-Royce in particular to transition to a fully onshore solution over the course of the program and we're working to bring even more auxiliary component supply onshore as well. “We're looking to use companies like Marand to supply into Rolls-Royce and to position Australian industry to sell into companies like Rolls-Royce, General Electric and Naval Group – these are all companies where we're well advanced in terms of their supply chain commitments, but also their commitment to help us deliver Australian Industry Content (AIC) and that's been well-received.” A further opportunity for local industry participation will come with the development of a ‘Cruiser in a Cornfield' land-based test facility to test the CEAFAR2 radar, Aegis combat system and other sensors in an integrated environment and which is part of the de-risking activity for the Hunter program. ADM understands that ASC Shipbuilding is currently working with the Commonwealth to develop proposals for the design and construction of the facility, which will also be used throughout the life of the ship in the development of future upgrades under the Ship Zero concept – see P36 for more on this. ASC Shipbuilding already has 900 local suppliers signed up through its Supply Chain Qualification Initiative, with around 450 in SA, 150 in WA and the remainder distributed throughout the country. The first Expressions of Interest – in support of the $20 million prototyping activity - are due to be released before the end of this year. Seven indigenous suppliers are already on the company's books and have benefited from mentoring to ensure they are ready to supply into the defence contracting environment, but the biggest challenge faced by the prospective supply chain, according to Lockhart, is cybersecurity. “I think that's an unsighted challenge within the supply chain and one that will come with some cost and effort,” he said. “As BAE Systems and ASC Shipbuilding, we have to provide the customer with an assurance that when this platform comes together, the whole platform is cyber-accredited - and that inevitably flows through the supply chains. That's probably the challenge that will test us hardest.” CSC and future sales The Canadian Government originally selected the GCS design as the basis for its future Canadian Surface Combatant vessel in October 2018 and upheld its selection February this year, following a lawsuit brought on by one of the losing bidders. Canada will acquire 15 ships, to be built locally by Irving Shipbuilding at its yard in Halifax, Nova Scotia under a C$45 billion deal to replace the Royal Canadian Navy's current fleet of 12 Halifax class and three Iroquois class destroyers. The prime contractor will be Lockheed Martin Canada, in partnership with BAE Systems, CAE, L3 technologies, MDA and Ultra Electronics and the first steel is expected to be cut in the early 2020s. This brings the GCS order book to 32 units (eight for the UK, nine for Australia and 15 for Canada) across three variants and the mass of the combined order provides additional supply chain opportunities within the three countries. BAE Systems has already formed a GCS user group community with the three governments and three navies involved to look at a range of common issues, including supply chain management. “BAE Systems negotiating with a supplier with a 32-ship proposition perspective is a much more advantageous position to be in, rather than individual customers ordering in small batches,” Lockhart said. “The other thing is that it really gives the supply chain some long-term certainty and the ability to make investments.” The prospect of increasing the GCS family further is also promising in the near term, with countries like Japan embarking on ASW frigate replacement programs. The Royal NZ Navy will also need to begin replacing its two Anzac frigates in the mid-2030s, despite their current upgrade program. ADM is also watching the US FFG(X) program closely, with the possibility that it will be rescoped and rescheduled in the future. The Hunter class ship, with its pedigree of ASW capability, together with its state-of-the-art CEAFAR radar, US Aegis combat system, Hawklink datalink, CEC capability and US weapons, would arguably make a compelling reference design, should the US Navy seek alternatives to FFG(X) in its current form. “This ship will be the most modern advanced ASW frigate in the water. The reason it won against its competitors was the unique capabilities it offered the UK, Australia and Canada for the roles that they require,” Craig Lockhart said. “Hunter has the ability to operate as part of a global task force and it will have an interoperability with the US that is an advance of Type 26 and, as far as the CEAFAR radar is concerned, this is a very capable radar that is drawing the attention of the world's superpowers.” https://www.australiandefence.com.au/news/a-quiet-hunter-navy-s-future-frigate

Toutes les nouvelles