8 janvier 2019 | International, Terrestre, C4ISR

The Army's M1 Abrams Tank Is About To Get Even Deadlier

by Kris Osborn

The Army is engineering new AI-enabled Hostile Fire Detection sensors for its fleet of armored combat vehicles to identify, track and target incoming enemy small arms fire.

This system, integrated onto Apache Attack helicopters, uses infrared sensors to ID a “muzzle flash” or heat signature from an enemy weapon. The location of enemy fire could then be determined by a gateway processor on board the helicopter able to quickly geolocate the attack.

The Army is engineering new AI-enabled Hostile Fire Detection sensors for its fleet of armored combat vehicles to identify, track and target incoming enemy small arms fire.

Even if the enemy rounds being fired are from small arms fire and not necessarily an urgent or immediate threat to heavily armored combat vehicles such as an Abrams, Stryker or Bradley, there is naturally great value in quickly finding the location of incoming enemy small arms attacks, Army weapons developers explain.

There are a range of sensors now being explored by Army developers; infrared sensors, for example, are designed to identify the “heat” signature emerging from enemy fire and, over the years, the Army has also used focal plane array detection technology as well as acoustic sensors.

“We are collecting threat signature data and assessing sensors and algorithm performance,” Gene Klager, Deputy Director, Ground Combat Systems Division, Night Vision and Electronic Sensors Directorate, told Warrior Maven in an interview last year.

Klager's unit, which works closely with Army acquisition to identify and at times fast-track technology to war, is part of the Army's Communications, Electronics, Research, Development and Engineering Center (CERDEC).

Army senior leaders also told Warrior Maven the service will be further integrating HFD sensors this year, in preparation for more formals testing to follow in 2019.

Enabling counterattack is a fundamental element of this, because being able to ID enemy fire would enable vehicle crews to attack targets from beneath the protection of an armored hatch.

The Army currently deploys a targeting and attack system called Common Remotely Operated Weapons System, or CROWS; using a display screen, targeting sensors and controls operating externally mounted weapons, CROWS enables soldiers to attack from beneath the protection of armor.

“If we get a hostile fire detection, the CROWS could be slued to that location to engage what we call slue to cue,” Klager said.

Much of the emerging technology tied to these sensors can be understood in the context of artificial intelligence, or AI. Computer automation, using advanced algorithms and various forms of analytics, can quickly process incoming sensor data to ID a hostile fire signature.

“AI also takes other information into account and helps reduce false alarms,” Klager explained.

AI developers often explain that computer are able to much more efficiently organize information and perform key procedural functions such as performing checklists or identifying points of relevance; however, many of those same experts also add that human cognition, as something uniquely suited to solving dynamic problems and weighing multiple variables in real time, is nonetheless something still indispensable to most combat operations.

Over the years, there have been a handful of small arms detection technologies tested and incorporated into helicopters; one of them, which first emerged as something the Army was evaluating in 2010 is called Ground Fire Acquisition System, or GFAS.

This system, integrated onto Apache Attack helicopters, uses infrared sensors to ID a “muzzle flash” or heat signature from an enemy weapon. The location of enemy fire could then be determined by a gateway processor on board the helicopter able to quickly geolocate the attack.

While Klager said there are, without question, similarities between air-combat HFD technologies and those emerging for ground combat vehicles, he did point to some distinct differences.

“From ground to ground, you have a lot more moving objects,” he said.

Potential integration between HFD and Active Protection Systems is also part of the calculus, Klager explained. APS technology, now being assessed on Army Abrams tanks, Bradleys and Strykers, uses sensors, fire control technology and interceptors to ID and knock out incoming RPGs and ATGMs, among other things. While APS, in concept and application, involves threats larger or more substantial than things like small arms fire, there is great combat utility in synching APS to HFD.

Full article: https://nationalinterest.org/blog/buzz/armys-m1-abrams-tank-about-get-even-deadlier-40847

Sur le même sujet

  • Defense News Conference: The Navy's Unmanned Vehicle Expansion

    5 septembre 2024 | International, Naval

    Defense News Conference: The Navy's Unmanned Vehicle Expansion

    In this Defense News Conference panel, Navy experts discuss the expansion of unmanned vehicles and how they are shaping the future of maritime warfare.

  • The US made the wrong bet on radiofrequency, and now it could pay the price

    22 juin 2018 | International, C4ISR

    The US made the wrong bet on radiofrequency, and now it could pay the price

    By: Aaron Mehta WASHINGTON – The Pentagon's belief in its technology drove the Department of Defense to trust it would have control over the electromagnetic spectrum for years to come, but that decision has left America vulnerable to new leaps in technology from China and Russia, according to a top military official. Gen. Paul Selva, vice chairman of the Joint Chiefs, has now concluded that the Pentagon needs to ensure it is keeping up with those near-peer nations, let along reestablishing dominance of electronic warfare and networking. “I think we assumed wrongly that encryption and our domination over the precision timing signals would allow us to evade the enemy in the electromagnetic spectrum. I think that was a bad assumption,” Selva said Thursday at the annual Center for a New American Security conference. “It's not that we disarmed, it's that we took a path that they have now figured out,” Selva said. China and Russia instead focused on deploying “digitally managed radio frequency manipulation, which changed the game in electronic warfare.” He added that a DoD study looking at the next decade concluded “We have some work to do.” Specifically, the United States needs to discover what Selva dubbed “alternative pathways” for communications and command and control systems. “It doesn't have to be a [radiofrequency] game. It's an RF game because we choose to make it so. And we're going to have to do some targeted investments in expanding the capacity of the networks that we use for command and control and battle management,” he said. “If we fail to do that, we're going to kick ourselves into the force-counterforce game inside the electromagnetic spectrum for the balance of the next couple of decades. “We have to adapt to that, and adapt quickly. The work has been done to characterize the problem, and the problem is, we're locked in this point-counterpoint fight with two potential competitors who have taken alternative paths. So we have to unlock a different way to do that work.” https://www.c4isrnet.com/it-networks/2018/06/21/the-us-made-the-wrong-bet-on-radiofrequency-and-now-it-could-pay-the-price/

  • U.S. Military Turns To Remote Pilot Training

    15 juin 2020 | International, Aérospatial

    U.S. Military Turns To Remote Pilot Training

    Lee Hudson June 11, 2020 Once the global coronavirus pandemic hit the U.S., the military moved to ramp up remote pilot training options. But it is unclear if the trend will continue after the contagion passes. Before COVID-19, the Air Force was developing immersive training devices that would help instruct students remotely as part of Air Education and Training Command's Pilot Training Next program, says Lt. Col. Ryan Riley, commander of Detachment 24. Instead of the pupil coming into the office, receiving an in-person brief, locating a training device and executing a mission, Riley's team was looking at how to conduct those events with both the student and instructor at separate locations. Army pauses to assess training options Air Force and Navy immediately pivot to remote instruction “What we wanted to see, prior to COVID-19, was how far [we could] push the bounds of remote instruction,” Riley says. The pandemic turned that desire into a need to provide students the same level of instruction remotely as they would in person. The Air Force and training companies were already working to develop virtual training systems when COVID-19 struck, and the pandemic seems to have accelerated adoption. “There are only so many places to train,” says Todd Probert, defense and security group president at CAE. Though the military was once reluctant to fully tap into distance training, the question has become: “Is there a way to centralize that instruction?” he says. Pilots more than 100 mi. from a training base would be required to quarantine for two weeks once they arrived. The technology, however, was “very glitchy,” Riley says. The main problem was latency. So the team got to work, disassembling hardware and issuing the newest equipment to students and some of the instructor corps. Another issue was the fact that the detachment's home-use devices were running off a laptop. The team discovered that various software programs such as remote screen-sharing were taxing the central processing unit (CPU) heavily, overwhelming laptops, says Lt. Col. Robert Knapp, Detachment 24 operations officer. “No matter how good a laptop you buy, they're just never going to run at the same speed as a desktop computer,” Knapp says. “We took some of our older desktop computers that were in the building and sent those home with students to replace the laptops, which opened up a lot more CPU bandwidth.” The students also were asked to plug their devices into their routers instead of using wireless home internet, which reduced latency and resulted in a more streamlined, less glitchy process. Meanwhile, the Army was tackling similar challenges at Fort Rucker in Dale County, Alabama, where the service produces pilots to fly the Boeing AH-64 Apache and CH-47 Chinook and Sikorsky UH-60 Black Hawk. In addition to training its own pilots at Fort Rucker, the service also assists with the training of foreign military aviators from as many as 47 countries annually at the base. The Army established a virtual instructor's course so that the instructor pilots could learn how to teach using a digital platform, says Maj. Gen. David Francis, U.S. Army Aviation Center of Excellence and Fort Rucker commanding general. “COVID-19 has enabled us to really take a look at ourselves and how we're delivering training,” he says. Francis envisions a blend of in-person and virtual training once the crisis passes. As the pandemic took hold, the Navy, too, set up remote instruction with unprecedented speed. With 45 students per class, the service would not have been able to comply with social distancing guidance from the Centers for Disease Control and Prevention, according to Lt. Tim Benoit, aviation preflight indoctrination instructor at Naval Aviation Schools Command located in Pensacola, Florida. So in just five days, the Navy created a digital classroom and launched classes for its student Coast Guard, Marine Corps and Navy pilots. Benoit had selected flight instructors to test the new digital system, and the next day he prepared a presentation to train the rest of the instructors. “We were able to adapt to this without missing any productivity targets,” Benoit says. The Navy does not plan to employ remote instruction after the COVID-19 crisis but views the technology as an alternative when a natural disaster such as a hurricane hits. The service is recognizing the advantages of remote learning, however, which include saving time and money. Students have access to each session's recording and associated course materials, and the technology would allow students not in Pensacola to take the courses. “It can also be used in conjunction with in-person training to prep students . . . and it's been used to enable guest speakers” in another city, Benoit says. “Those are some things that I think may persist beyond the pandemic.” https://aviationweek.com/defense-space/budget-policy-operations/us-military-turns-remote-pilot-training

Toutes les nouvelles