7 février 2024 | International, Terrestre
10 novembre 2021 | International, Aérospatial
Spain has no interest in the American F-35 fighter jet and is solely committed to the Future Combat Air System that it is pursuing with France and Germany, a defense spokeswoman told Reuters.
7 février 2024 | International, Terrestre
28 septembre 2020 | International, C4ISR
This low-cost unmanned demonstrator could give larger drones, such as the MQ-9 Reaper, game-changing new capabilities. BY JOSEPH TREVITHICK General Atomics says that it has conducted captive carry tests of its Sparrowhawk, a new small drone that will be able to be launched and recovered in flight. The company says that Sparrowhawk is a demonstrator and was developed specifically to work with other larger unmanned aircraft that it builds, such as the MQ-9 Reaper and MQ-1C Gray Eagle, offering an important stepping stone to all-new capabilities on those existing designs, as well as future ones. The California-based drone's maker said the captive carry tests, in which the drone was carried aloft by an MQ-9, but was not launched, took place between Sept. 16 and 17, 2020. This kind of testing is done to gather data on how a system, as well as the launch platform in many cases, handles the stress of flight. A picture of Sparrowhawk that General Atomics released to The War Zone shows that the drone features a large main wing that is stowed parallel with the main fuselage before launch, after which is swings 90 degrees into a deployed position. The drone also has a v-tail and there appears to be at least one air intake for the propulsion system on the right side. It's unclear what type of powerplant powers the air-launched drone. Sparrowhawk concept art that General Atomics posted on Twitter earlier in September showed a similar configuration, but with two fans at the rear of the fuselage. The company has said that the small drone will offer a reduced acoustic signature, as well as a visual one, compared to its larger designs, such as the MQ-9. It's not clear yet how General Atomics is planning to recover Sparrowhawk in flight and whether unmanned platforms, such as the MQ-9, will be able to carry out this task. "Sparrowhawk iterates on the DARPA Gremlins Program," according to the company. Dynetics, now a subsidiary of Leidos, beat out General Atomics, among others, to build the experimental Gremlins drone, now also designed the X-61A, as well as the airborne recovery system, which is presently mounted on a C-130 Hercules transport aircraft. You can read more about Gremlins and the recovery concept, which includes the drone catching the end of a cable in flight and then being reeled in, in these past War Zone pieces. It's hard overstate how significant Sparrowhawk, and any further developments it spurs, could be for both General Atomics existing product lines and future unmanned designs. The ability of a large drone to launch smaller ones, all potentially working together semi-autonomously or even as part of a fully-autonomous swarm, could open the door to all kinds of new capabilities, while reducing the risk to the launch platform. “Sparrowhawk extends and multiplies MQ-9-based sensors, reduces manpower and increases ISR [intelligence, surveillance, and reconnaissance] coverage,” David Alexander, President of General Atomics Aeronautical Systems, Inc. (GA-ASI), said in a statement. Beyond providing far more flexible ISR over a larger geographical area, Sparrowhawks may also provide valuable stand-in electronic warfare jamming or even act as decoys to blind and confuse enemy integrated air defenses, which could drastically increase the survivability of the launch platform and even help clear a path for other manned and unmanned aircraft, as well as stand-off missile strikes. Sparrowhawks could potentially carry out their own kinetic strikes if they can be equipped with traditional explosive warheads, although there is no official information yet if arming these unmanned aircraft is a possibility. If it is indeed the case, these drones might able to act as loitering munitions, which would be able to conduct persistent surveillance of designated areas before then carrying out strikes on targets of opportunity or return for recovery and re-launch. General Atomics says that Sparrowhawk is intended to be an attritable platform, as well, despite being designed to be recovered and reused. Attritable designs are those that are low cost enough that commanders can employ them in higher-risk environments that would be off-limits to more expensive exquisite types. “With attritableONE technology that is survivable and precise, Sparrowhawk is a true game changer,” GS-ASI's President Alexander said. This program is part of the U.S. Air Force's expansive Advanced Battle Management System (ABMS) program, which is seeking to develop a host of new highly-networked technologies that will expand the service's ability to gather information and then rapidly analyze and disseminate it, including targeting data that can then be passed to other U.S. military units in the air, on the ground, and at sea. As the name implies, attritableONE is focused on developing new attritable unmanned aircraft. In a recent major demonstration of various ABMS capabilities and associated technologies, an MQ-1C Gray Eagle launched an Area-I Air-Launched, Tube-Integrated, Unmanned System 600 (ALTIUS 600) small drone, acting as an attritableONE testbed. The ALTIUS 600 then positively identified a target that the MQ-1C's onboard sensors had first identified. The U.S. Army has also been experimenting with the ALTIUS 600 as part of its Air Launch Effects (ALE) effort, which also envisions fleets of small drones performing various ISR, deception, and other tasks, which you can read about in more detail in this past War Zone piece. During the recent ABMS demonstration, a General Atomics MQ-9 also carried a Rosetta Echo Advanced Payload (REAP) communications and datalink pod, which includes technology developed under gatewayONE and meshONE, which are also part of the broader ABMS effort. "The REAP pod has been developed under contract from the Air National Guard and demonstrated a communications relay capability for both Link-16 and the Silvus meshONE network providing seamless connectivity between air and ground participants in the demonstration area," according to General Atomics. All told, the Sparrowhawk looks to be an extremely exciting development. It also comes at a time when the U.S. Air Force, the largest operator of MQ-9s, is looking to stop buying those drones due to concerns that they are simply too vulnerable to be useful during a high-end conflict. The ability of Reapers to launch and recover smaller, attritable drones and, by extension, perform a wider array of tasks over a larger geographical area, even in contested environments, could breathe new life into that design. We at The War Zone are very eager to learn more about Sparrowhawk and what it can do. https://www.thedrive.com/the-war-zone/36747/general-atomics-sparrowhawk-drone-launched-drone-breaks-cover
30 septembre 2020 | International, C4ISR, Sécurité
Drew Schnabel The U.S. Department of Defense is set to adopt an initial zero-trust architecture by the end of the calendar year, transitioning from a network-centric to a data-centric modern security model. Zero trust means an organization does not inherently trust any user. Trust must be continually assessed and granted in a granular fashion. This allows defense agencies to create policies that provide secure access for users connecting from any device, in any location. “This paradigm shift from a network-centric to a data-centric security model will affect every arena of our cyber domain, focusing first on how to protect our data and critical resources and then secondarily on our networks,” Vice Adm. Nancy Norton, director of the Defense Information Systems Agency and commander of the Joint Force Headquarters-Department of Defense Information Network, said at a virtual conference in July. How does the Pentagon's AI center plan to give the military a battlefield advantage? The Pentagon's artificial intelligence hub is working on tools to help in joint, all-domain operations as department leaders seek to use data to gain an advantage on the battlefield. Andrew Eversden To understand how the DoD will benefit from this new zero-trust security model, it's important to understand the department's current Joint Information Environment, or JIE, architecture; the initial intent of this model; and why the JIE can't fully protect modern networks, mobile users and advanced threats. Evolving DoD information security The JIE framework was developed to address inefficiencies of siloed architectures. The goal of developing a single security architecture, or SSA, with JIE was to collapse network security boundaries, reduce the department's external attack surface and standardize management operations. This framework helped ensure that defense agencies and mission partners could share information securely while reducing required maintenance and continued infrastructure expenditures. Previously, there were more than 190 agency security stacks located at the base/post/camp/station around the globe. Now, with the JIE architecture, there are just 22 security stacks centrally managed by the Defense Information Systems Agency to provide consistent security for users, regardless of location. “This paradigm shift from a network-centric to a data-centric security model will affect every arena of our cyber domain, focusing first on how to protect our data and critical resources and then secondarily on our networks,” Vice Adm. Nancy Norton, director of the Defense Information Systems Agency and commander of the Joint Force Headquarters-Department of Defense Information Network, said at a virtual conference in July. To understand how the DoD will benefit from this new zero-trust security model, it's important to understand the department's current Joint Information Environment, or JIE, architecture; the initial intent of this model; and why the JIE can't fully protect modern networks, mobile users and advanced threats. Evolving DoD information security The JIE framework was developed to address inefficiencies of siloed architectures. The goal of developing a single security architecture, or SSA, with JIE was to collapse network security boundaries, reduce the department's external attack surface and standardize management operations. This framework helped ensure that defense agencies and mission partners could share information securely while reducing required maintenance and continued infrastructure expenditures. Previously, there were more than 190 agency security stacks located at the base/post/camp/station around the globe. Now, with the JIE architecture, there are just 22 security stacks centrally managed by the Defense Information Systems Agency to provide consistent security for users, regardless of location. Initially, the JIE was an innovative concept that took the DoD from a highly fragmented architecture, in which each agency managed its own cybersecurity strategy, to an architecture in which there is a unified SSA. However, one of the early challenges identified for the JIE was managing cloud cybersecurity as part of the SSA. The components in the JIE — the Joint Regional Security Stacks family's internet access points and cloud access points — have traditionally focused on securing the network, rather than the data or user. As more DoD employees and contractors work remotely and data volumes increase, hardware cannot scale to support them. This has created ongoing concerns with performance, reliability, latency and cost. A cloud-first approach In response, the DoD leverages authorized solutions from the Federal Risk and Authorization Management Program, and it references the Secure Cloud Computing Architecture guidance for a standard approach for boundary and application-level security for impact Level 4 and 5 data hosted in commercial cloud environments. The purpose of the SCCA is to provide a barrier of protection between the DoD Information Services Network and the commercial cloud services that the DoD uses while optimizing the cost-performance trade in cybersecurity. Defense agencies are now exploring enterprise-IT-as-a-service options to move to cloud, and reduce the need for constant updates and management of hardware. Through enterprise-IT-as-a-service models, defense agencies will be able to scale easily, reduce management costs and achieve a more competitive edge over their adversaries. Before the pandemic hit, defense agencies were already moving to support a more mobile workforce, where employees can access data from anywhere on any device. However, a cyber-centric military requires security to be more deeply ingrained into employee culture rather than physical protection of the perimeter. The next evolution to secure DISA and DoD networks is to embrace a secure access edge model with zero-trust capabilities. The SASE model moves essential security functions — such as web gateway firewalls, zero-trust capabilities, data loss prevention and secure network connectivity — all to the cloud. Then, federal employees have direct access to the cloud, while security is pushed as close to the user/data/device as possible. SP 800-27, zero-trust guidance from the National Institute of Standards and Technology, provides a road map to migrate and deploy zero trust across the enterprise environment. This guidance outlines the necessary tenants of zero trust, including securing all communication regardless of network location, and granting access on a per-session basis. This creates a least-privilege-access model to ensure the right person, device and service have access to the data they need while protecting high-value assets. As the DoD transforms the JIE architecture to an as-a-service model with zero-trust capabilities, defense agencies will experience cost savings, greater scalability, better performance for the end user and war fighter, improved visibility, and control across DoD networks — and ultimately a stronger and more holistic cybersecurity capability moving forward. https://www.c4isrnet.com/opinion/2020/09/29/the-dod-needs-data-centric-security-and-heres-why/