20 août 2019 | International, Aérospatial

ROBOpilot makes maiden flight in US Air Force tests

By David Szondy

A new US Air Force kit that can turn a conventional aircraft into a robotic one has completed its maiden flight. Developed by the Air Force Research Laboratory (AFRL) and DZYNE Technologies Incorporated as part of the Robotic Pilot Unmanned Conversion Program, the ROBOpilot made its first two-hour flight on August 9 at the Dugway Proving Ground in Utah after being installed in a 1968 Cessna 206 small aircraft.

With modern autopilots, even small modern aircraft already have surprising ability to fly themselves, but there's a big difference between maintaining a course and actually flying an aircraft the way a human pilot does. From the opposite direction, autonomous drones are becoming increasingly sophisticated, but these tend to be highly specialized and expensive.

Funded by AFRL's CRI Small Business Innovative Research project, ROBOpilot is designed to make these two paths meet in the middle by replacing the pilot seat (and pilot) with a kit consisting of all the actuators, electronics, cameras, and power systems needed to fly a conventional aircraft, plus a robotic arm for the manual tasks. In this way, ROBOpliot can operate the yoke, rudder, brakes, throttle, and switches while reading the dashboard gauges and displays like a human pilot.

According to the Air Force, the installation is simple, non-invasive and non-permanent, using standard commercial technologies and components. This allows planes to be converted to unmanned operations without the complexity and costs of purpose-built UAVs, and switched back to human control configuration when required.

The recent flight comes after a year of building and testing that involved trialing the device concept using a RedBird FMX simulator to demonstrate how well it can fly in a simulated environment before progressing to the real thing. The US Federal Aviation Administration-certified trainer showed that ROBOpilot could carry out autonomous takeoffs, mission navigation, and landings in both normal and abnormal conditions.

"Imagine being able to rapidly and affordably convert a general aviation aircraft, like a Cessna or Piper, into an unmanned aerial vehicle, having it fly a mission autonomously, and then returning it back to its original manned configuration," says Dr. Alok Das, Senior Scientist with AFRL's Center for Rapid Innovation. "All of this is achieved without making permanent modifications to the aircraft."

https://newatlas.com/us-air-force-robopilot-flight/61105/

Sur le même sujet

  • Army moves ahead on plans to replace storied Bradley Fighting Vehicle

    17 octobre 2024 | International, Terrestre

    Army moves ahead on plans to replace storied Bradley Fighting Vehicle

    The program to replace the venerable Bradley infantry fighting vehicle is expected to cost $45 billion.

  • Lockheed will deliver advanced TPY-4 radar to Air Force for evaluation

    16 novembre 2023 | International, Aérospatial

    Lockheed will deliver advanced TPY-4 radar to Air Force for evaluation

    The system features an active electronically scanned array. Its many nodules allow for multitasking and rapid repogramming.

  • L3Harris to build prototype satellite capable of tracking hypersonic weapons

    15 janvier 2021 | International, Aérospatial

    L3Harris to build prototype satellite capable of tracking hypersonic weapons

    Nathan Strout WASHINGTON — The Missile Defense Agency awarded L3Harris Technologies a $121 million contract to build a prototype satellite capable of tracking hypersonic weapons, the agency announced Jan. 14. Under the contract, L3Harris is tasked with building an on-orbit prototype demonstration for the agency's Hypersonic and Ballistic Tracking Space Sensor, a proliferated constellation in low Earth orbit that is capable of detecting and tracking hypersonic weapons. The constellation is designed to fill the gap in the country's missile defense architecture created by hypersonic weapons, which are dimmer than traditional ballistic missiles, making them harder to see with the nation's infrared sensors based in geosynchronous orbit. In addition, they are able to maneuver around terrestrial sensors. With China and Russia developing these weapons, the Department of Defense is eager to develop a new constellation that can detect and track the threats anywhere in the world. And so is Congress — in December lawmakers set aside $130 million to fund the project. The HBTSS design solves the hypersonic weapon problem by placing the sensor much closer to the Earth's surface in the lower orbit, making it easier to see the threat. But because the sensors are closer to the Earth, they have a far more limited field of view than the sensors in geosynchronous orbit. In order to achieve global coverage, the Missile Defense Agency wants a proliferated constellation made up of dozens of satellites on orbit. L3Harris was one of four companies awarded $20 million contracts in 2019 to develop a prototype payload design and risk reduction demonstration for HBTSS, along with Northrop Grumman, Leidos and Raytheon Technologies. According to the initial contract announcements, work on those designs was due Oct. 31, 2020. With this most recent award, L3Harris has won the subsequent competition between the four companies to build the actual prototype. The company has also been selected to build satellites for the Space Development Agency that will track hypersonic threats and feed data to HBTSS. In October, L3Harris won a $193 million contract to build four of the agency's eight wide field of view (WFOV) satellites, with SpaceX building four more. According to Space Development Agency leaders, their satellites will work in conjunction with HBTSS satellites to track hypersonic threats. The WFOV satellites will provide initial detection and tracing of the weapons, passing custody from satellite to satellite as the threats traverse the globe. Then, the WFOV satellites will pass custody to the medium field of view HBTSS satellites, which can provide targeting solutions with their more accurate sensors. The WFOV satellites are scheduled for launch as early as September 2022. Work on the HBTSS prototype contract will be complete in July 2023. https://www.c4isrnet.com/battlefield-tech/space/2021/01/14/l3harris-to-build-prototype-satellite-capable-of-tracking-hypersonic-weapons

Toutes les nouvelles