14 décembre 2024 | International, Aérospatial
31 juillet 2019 | International, Naval
LOS ANGELES – July 30, 2019 – Northrop Grumman Corporation (NYSE: NOC) announced it has been awarded a $167 million contract by the U.S. Navy for Lot 8 Full Rate Production of the AGM-88E Advanced Anti-Radiation Guided Missile (AARGM). This contract includes options for increased quantities for the Department of the Navy, missiles for the Italian Air Force and missiles for foreign military sales.
“AARGM is able to rapidly engage air-defense threats,” said Cary Ralston, vice president and general manager, defense electronic systems, Northrop Grumman. “We are proud to provide our warfighters with this advanced and affordable capability.”
AARGM is a U.S. Navy and Italian Air Force international cooperative acquisition program with the U.S. Navy as the executive agent. AARGM is currently deployed with the U.S. Navy and U.S. Marine Corps on the F/A-18C/D Hornet, F/A-18E/F Super Hornet and EA-18G Growler aircraft. AARGM is also integrated on the Italian Air Force's Tornado Electronic Combat aircraft.
Northrop Grumman is a leading global security company providing innovative systems, products and solutions in autonomous systems, cyber, C4ISR, space, strike, and logistics and modernization to customers worldwide. Please visit news.northropgrumman.com and follow us on Twitter, @NGCNews, for more information.
14 décembre 2024 | International, Aérospatial
7 février 2019 | International, C4ISR
Today, machine learning (ML) is coming into its own, ready to serve mankind in a diverse array of applications – from highly efficient manufacturing, medicine and massive information analysis to self-driving transportation, and beyond. However, if misapplied, misused or subverted, ML holds the potential for great harm – this is the double-edged sword of machine learning. “Over the last decade, researchers have focused on realizing practical ML capable of accomplishing real-world tasks and making them more efficient,” said Dr. Hava Siegelmann, program manager in DARPA's Information Innovation Office (I2O). “We're already benefitting from that work, and rapidly incorporating ML into a number of enterprises. But, in a very real way, we've rushed ahead, paying little attention to vulnerabilities inherent in ML platforms – particularly in terms of altering, corrupting or deceiving these systems.” In a commonly cited example, ML used by a self-driving car was tricked by visual alterations to a stop sign. While a human viewing the altered sign would have no difficulty interpreting its meaning, the ML erroneously interpreted the stop sign as a 45 mph speed limit posting. In a real-world attack like this, the self-driving car would accelerate through the stop sign, potentially causing a disastrous outcome. This is just one of many recently discovered attacks applicable to virtually any ML application. To get ahead of this acute safety challenge, DARPA created the Guaranteeing AI Robustness against Deception (GARD) program. GARD aims to develop a new generation of defenses against adversarial deception attacks on ML models. Current defense efforts were designed to protect against specific, pre-defined adversarial attacks and, remained vulnerable to attacks outside their design parameters when tested. GARD seeks to approach ML defense differently – by developing broad-based defenses that address the numerous possible attacks in a given scenario. “There is a critical need for ML defense as the technology is increasingly incorporated into some of our most critical infrastructure. The GARD program seeks to prevent the chaos that could ensue in the near future when attack methodologies, now in their infancy, have matured to a more destructive level. We must ensure ML is safe and incapable of being deceived,” stated Siegelmann. GARD's novel response to adversarial AI will focus on three main objectives: 1) the development of theoretical foundations for defensible ML and a lexicon of new defense mechanisms based on them; 2) the creation and testing of defensible systems in a diverse range of settings; and 3) the construction of a new testbed for characterizing ML defensibility relative to threat scenarios. Through these interdependent program elements, GARD aims to create deception-resistant ML technologies with stringent criteria for evaluating their robustness. GARD will explore many research directions for potential defenses, including biology. “The kind of broad scenario-based defense we're looking to generate can be seen, for example, in the immune system, which identifies attacks, wins and remembers the attack to create a more effective response during future engagements,” said Siegelmann. GARD will work on addressing present needs, but is keeping future challenges in mind as well. The program will initially concentrate on state-of-the-art image-based ML, then progress to video, audio and more complex systems – including multi-sensor and multi-modality variations. It will also seek to address ML capable of predictions, decisions and adapting during its lifetime. A Proposers Day will be held on February 6, 2019, from 9:00 AM to 2:00 PM (EST) at the DARPA Conference Center, located at 675 N. Randolph Street, Arlington, Virginia, 22203 to provide greater detail about the GARD program's technical goals and challenges. Additional information will be available in the forthcoming Broad Agency Announcement, which will be posted to www.fbo.gov. https://www.darpa.mil/news-events/2019-02-06
22 mars 2021 | International, Aérospatial, Naval, Terrestre, C4ISR, Sécurité
Today