24 août 2021 | International, Aérospatial

French military picks Thales to provide helmet-mounted displays and avionics for Rafale jet fighter aircraft

Thales to provide Scorpion helmet-mounted displays and 400 digital multifunction displays to enhance Rafale jet fighter situational awareness.

https://www.militaryaerospace.com/communications/article/14208912/helmetmounted-displays-avionics-jet-fighter

Sur le même sujet

  • New US Army radios show anti-jam progress at network experiment

    22 septembre 2020 | International, Terrestre, C4ISR

    New US Army radios show anti-jam progress at network experiment

    Andrew Eversden WASHINGTON — The U.S. Army is seeing improvements in anti-jam capabilities in new radios crucial to securing manned-unmanned communications at its annual Network Modernization Experiment. At NetModX '20, which runs from late July to early October at Joint Base McGuire-Dix-Lakehurst in New Jersey, the Army's Combat Capabilities Development Command's C5ISR Center — or Command, Control, Communication, Computers, Cyber, Intelligence, Surveillance, and Reconnaissance Center — is testing the resiliency of the new radios. The effort will help the service observe how they would perform in the field as the Army looks to partner humans and machines. Initial data from the event suggests the two companies involved — Silvus and Persistent Systems — have improved their radio capabilities from last year, specifically in regard to anti-jam, according to Daniel Duvak, chief of the C5ISR Center's Radio Frequency Communications division. But one major challenge is making the radios less detectable as the Army's tactical network team starts to focus on command post survivability — or reducing the electromagnetic signature of command post communications — while not sacrificing latency and throughput. “If you want to make it less detectable, you know oftentimes you have to trade off the throughput or the range or one of those other products,” Duvak said. “So that's the piece and the real technical challenge that they're continuing to work on over the next few months. We've seen progress that they've made in those areas, but that's the piece that they're still working on.” Robert Stevens, an electronics engineer at the Radio Frequency Communications division, told C4ISRNET that the radios are an important piece of the next-generation combat vehicle. And Duvak said the Army's tactical network modernization team — made up of the Network Cross-Functional Team and Program Executive Office Command, Control, Communications-Tactical — wants to use the radios as a mid-tier radio solution. The development and fielding of new science and technology projects can take more than five years; however, the Army wants to speed that up as it seeks to modernize systems in preparation for future conflicts with near-peer adversaries. At last year's Network Modernization Experiment, the C5ISR Center tested several vendors' radios to see where commercial technology stood. Alternative contracting options, like broad agency announcements as well as cooperative research and development agreements, have proved critical to quickening radio development. Under the contracting mechanisms, vendors and the Army have more flexibility to experiment with radios and make iterative modifications as requirements change. Duvak said this is different from how the Army did business years ago, when it would award yearslong contracts but eventually receive radios that no longer met current requirements. “What we were able to do at this program was, in just about a year and a half of development time, take a couple of those products that we saw that were very promising and we were able to add and actually fund vendors to enhance those radios with those resiliency features that we were just talking about for the contested environment,” Duvak said. “Things like making them anti-jam, or more difficult for the adversary to jam, making them more difficult for the adversary to detect or intercept our communications.” Duvak said the Army wants the new radio capabilities for Capability Set '23, a collection of new tactical network tools to be fielded to soldiers in fiscal 2023. The resiliency of communications is critical as the tactical network modernization team pivots to reduce the electronic signature of the service's command post under Capability Set '23. The team is looking to increase bandwidth and reduce latency as part of that set of tools. Preliminary design review for Capability Set '23 is scheduled for April next year. https://www.c4isrnet.com/battlefield-tech/it-networks/2020/09/21/new-us-army-radios-show-anti-jam-progress-at-network-experiment/

  • GA-ASI Demonstrates AI Driven Targeting Computer with AFRL’s Agile Condor Pod

    8 septembre 2020 | International, Aérospatial

    GA-ASI Demonstrates AI Driven Targeting Computer with AFRL’s Agile Condor Pod

    General Atomics Aeronautical Systems, Inc., with the support of SRC Inc., successfully integrated and flew the Air Force Research Laboratory's (AFRL) Agile Condor Pod on an MQ-9 Remotely Piloted Aircraft at GA-ASI's Flight Test and Training Center in Grand Forks, North Dakota The Agile Condor Pod provides on-board high-speed computer processing coupled with machine learning algorithms to detect, correlate, identify, and track targets of interest. With this capability, the MQ-9 is able to identify objects autonomously utilizing its on-board Electro-optical/Infrared (EO/IR) sensor and GA-ASI's Lynx Synthetic Aperture Radar (SAR). Defense contractor SRC, Inc. developed the Agile Condor system for the Air Force Research Laboratory (AFRL), delivering the first pod in 2016. It's not clear whether the Air Force conducted any flight testing of the system on other platforms before hiring General Atomics to integrate it onto the Reaper in 2019. The service had previously said that it expected to take the initial pod aloft in some fashion before the end of 2016. High-powered computing at the edge enables autonomous target detection, identification and nomination at extended ranges and on-board processing reduces communication bandwidth requirements to share target information with other platforms. This is an important step towards greater automation, autonomous target detection, and rapid decision-making. GA-ASI will continue to work with AFRL to refine the capability and foster its transition to operational constructs that will improve warfighters' ability to operate in contested or denied environments. “Sensors have rapidly increased in fidelity, and are now able to collect vast quantities of data, which must be analyzed promptly to provide mission critical information,” an SRC white paper on Agile Condor from 2018 explains. “Stored data [physically on a drone] ... creates an unacceptable latency between data collection and analysis, as operators must wait for the RPA [remotely piloted aircraft] to return to base to review time sensitive data.” “In-mission data transfers, by contrast, can provide data more quickly, but this method requires more power and available bandwidth to send data,” the white paper continues. “Bandwidth limits result in slower downloads of large data files, a clogged communications link and increased latency that could allow potential changes in intel between data collection and analysis. The quantities of data being collected are also so vast, that analysts are unable to fully review the data received to ensure actionable information is obtained.” This is all particularly true for drones equipped with wide-area persistent surveillance systems, such as the Air Force's Gorgon Stare system, which you can read about in more detail here, that grab immense amounts of imagery that can be overwhelming for sensor operators and intelligence analysts to scour through. Agile Condor is designed to parse through the sensor data a drone collects first, spotting and classifying objects of interest and then highlighting them for operators back at a control center or personnel receiving information at other remote locations for further analysis. Agile Condor would simply discard “empty” imagery and other data that shows nothing it deems useful, not even bothering to forward that on. “This selective ‘detect and notify' process frees up bandwidth and increases transfer speeds, while reducing latency between data collection and analysis,” SRC's 2018 white paper says. “Real time pre-processing of data with the Agile Condor system also ensures that all data collected is reviewed quickly, increasing the speed and effectiveness with which operators are notified of actionable information.” At least at present, the general idea is still to have a human operator in the ‘kill chain' making decisions about how to act on such information, including whether or not to initiate a lethal strike. The Air Force has been emphatic about ensuring that there will be an actual person in the loop at all times, no matter how autonomous a drone or other unmanned vehicle may be in the future. An Air Force Research Laboratory briefing slide showing a concept of operations for how a drone might use Agile Condor to sense and avoid threats autonomously Still, developments such as Agile Condor will significantly reduce the amount of necessary human interaction in various parts of the targeting process, as well as general intelligence collection and initial analysis, and potentially much more, as time goes on. It could also fuse various forms of sensor data and other available intelligence together to specifically weight possible areas of interest over others and prioritize certain targets. The Air Force has also said that this system could use these capabilities to enable drones to navigate and detect and avoid potential threats automatically, including at times when its links to a control center or the GPS satellite navigation system are disrupted or blocked entirely. Sources: Press Release; The Drive https://www.uasvision.com/2020/09/07/ga-asi-demonstrates-ai-driven-targeting-computer-with-afrls-agile-condor-pod/

  • BAE Systems selected to enhance GPS technology on Eurofighter Typhoon

    19 novembre 2023 | International, Aérospatial

    BAE Systems selected to enhance GPS technology on Eurofighter Typhoon

    DIGAR uses advanced antenna electronics, high-performance signal processing, and digital beamforming for significantly improved GPS signal reception and superior jamming immunity

Toutes les nouvelles