20 janvier 2022 | International, Naval

Navy, Lockheed Haven’t Reached Cost Deal on LCS Combining Gear - USNI News

The Navy and Lockheed Martin are still negotiating the cost breakdown for a fix to the Freedom variant Littoral Combat Ship that has restricted the operations of most ships in the class, a service official said last week. Capt. Andy Gold, the program manager for the Navy’s Littoral Combat Ship, told reporters at the annual …

https://news.usni.org/2022/01/17/navy-lockheed-havent-reached-cost-deal-on-lcs-combining-gear

Sur le même sujet

  • Space Force crafts range operations contract as launch pace quickens

    30 août 2022 | International, Aérospatial

    Space Force crafts range operations contract as launch pace quickens

    Cape Canaveral Space Force Station and Kennedy Space Center could host as many as 300 launches annually, up from 67 this year and 31 in 2021.

  • France’s armed forces minister: How AI figures into operational superiority

    3 décembre 2019 | International, C4ISR

    France’s armed forces minister: How AI figures into operational superiority

    By: Florence Parly Robot vs. human: This is the new battle in vogue. Ask Col. Gene Lee, a former fighter pilot and U.S. Air Force pilot trainer, defeated in 2016 by artificial intelligence in an air combat simulation. This specific AI program, even deprived of certain controls, is able to react 250 times faster than a human being. It is one story among many others of how AI technologies play and will play a leading role in operational superiority over the next decades. I personally choose not to oppose the human to the robot. There is no discussion of replacing human intelligence by artificial intelligence, but it will be essential in increasing our capabilities manyfold. AI is not a goal, per se; it must contribute to better-informed and faster decision-making for the benefit of our soldiers. AI means unprecedented intelligence capabilities. Crossing thousands of satellite images with data provided by the dark web in order to extract interesting links: This is what big-data analysis will make possible. AI also means better protection for our troops. To evacuate wounded personnel from the battlefield, to clear an itinerary or a mined terrain — as many perilous tasks that we will soon be able to delegate to robots. Lastly, AI means a stronger cyber defense. Cyber soldiers will be capable of countering at very high speed the increasingly stealthy, numerous and automated attacks that are threatening our systems and our economies. We have everything to win in embracing the opportunities offered by artificial intelligence. This is why the French Ministry of Armed Forces has decided to invest massively in this area. However, we are not naïve, and we do not ignore the risks associated with the development of emerging technologies such as AI. Hence, we chose to develop defense artificial intelligence according to three major principles: abiding by international law, maintaining sufficient human control and ensuring the permanent responsibility of the chain of command. To ensure daily compliance with these principles over the long term and to feed our ethical thought, as new uses of AI appear every day, I decided to create a ministerial ethics committee focused on defense issues. This committee will take office at the very end of this year and will come as an aid to decision-making and anticipation. Its main role will be to address questions raised by emerging technologies and their potential use in the defense field. At the heart of these questions stands an issue that is of interest but also of concern, both within the AI community and within civil society. It comes down to the lethal autonomous weapon systems that some call “killer robots” — weapon systems that would be able to operate without any form of human supervision, that would be able to alter the framework of the mission they are allocated or even assign new missions to themselves. It is important to know that such systems do not exist yet in today's theaters of operation. However, debating about them is legitimate. In fact, France did introduce this issue in 2013 to the United Nations in the framework of the Convention on Certain Conventional Weapons. We do wish these discussions to continue in this multilateral framework, the only one that can eventually bring about a regulation of military autonomous systems, as it is the only one that is altogether universal, credible and efficient. We cannot rule out the risk of such weapons being developed one day by irresponsible states, or falling into the hands of nonstate actors. The need to federate with all other nations in the world is even more imperative. France defends its values, respects its international commitments and remains faithful to them. Our position is unambiguous and has been expressed in the clearest terms by President Emmanuel Macron: France refuses to entrust the decision of life or death to a machine that would act fully autonomously and escape any form of human control. Such systems are fundamentally contrary to all our principles. They have no operational interest for a state whose armed forces abide by international law, and we will not deploy any. Terminator will never march down the Champs-Elysées on Bastille Day. Florence Parly is the armed forces minister in France. https://www.defensenews.com/outlook/2019/12/02/frances-armed-forces-minister-how-ai-figures-into-operational-superiority/

  • U.S. Army Flexes New Land-Based, Anti-Ship Capabilities

    21 octobre 2020 | International, Naval, Terrestre, C4ISR

    U.S. Army Flexes New Land-Based, Anti-Ship Capabilities

    Steve Trimble Lee Hudson Finding ever new and efficient ways to sink enemy ships is usually assigned to the U.S. Navy and, to a lesser extent, the Air Force, but not anymore. Though still focused on its primary role of maneuvering against land forces and shooting down air and missile threats, the Army is quietly developing an arsenal of long-range maritime strike options. As the Army carves out an offensive role in the Pentagon's preparations for a mainly naval and air war with China, service officials now seek to develop a capacity for targeting and coordinating strikes on maritime targets with helicopter gunships in the near term and with long-range ballistic missiles by 2025. The Project Convergence 2020 event in September focused the Army on learning how to solve the command and control challenge for a slew of new land-attack capabilities scheduled to enter service by fiscal 2023. The follow-on event next year will expand to include experiments with the Army's command and control tasks in the unfamiliar maritime domain. “I think we have a long way to go in terms of partnering with the Navy for some of the maritime targeting [capabilities],” says Brig. Gen. John Rafferty, the Army's cross-functional team leader for Long-Range Precision Fires. “And I think that'll be a natural evolution into Project Convergence 2021,” Rafferty says, speaking during the Association of the U.S. Army's virtual annual meeting on Oct. 15. The Army operates a small, modest fleet of watercraft, including logistics support vessels and Runnymede-class large landing craft, but service officials have been content to respond to attacks on enemy ships at sea with the Navy's surface combatants and carrier-based fighter squadrons. Last year, the Air Force also revived a maritime strike role by activating the Lockheed Martin AGM-158C Long-Range Anti-Ship Missile on the B-1B fleet. But the Army's position has changed. The AH-64E Capability Version 6, which Boeing started developing in 2018, includes a modernized radar frequency interferometer. The receiver can identify maritime radars, allowing the AH-64E to target watercraft at long range for the first time. Meanwhile, the Defense Department's Strategic Capabilities Office started working in 2016 to integrate an existing seeker used for targeting ships into the Army Tactical Missile System (Atacms), which is currently the Army's longest-range surface-to-surface missile at 300 km (162 nm). Beginning in fiscal 2023, the Lockheed Martin Precision Strike Missile (PrSM) is scheduled to begin replacing the Atacms. The Increment 1 version will extend the range of the Army's missiles to 500 km. A follow-on Increment 2 version of PrSM is scheduled to enter service in fiscal 2025, featuring a new maritime seeker now in flight testing by the Army Research Laboratory. “As we begin to develop the PrSM [Increment 2] with the cross-domain capability against maritime and emitting [integrated air defense system] targets, obviously we'll be partnering with the Navy on that,” Rafferty says. Targeting ships from land-based artillery systems is not unique to the Army. The U.S. Marine Corps plans to introduce the Raytheon-Kongsberg Naval Strike Missile, firing the ground-based anti-ship cruise missile from a remotely operated Joint Light Tactical Vehicle. To strike a moving target at ranges beyond the horizon, the Army needs more than an innovative new seeker. A targeting complex linking over-the-horizon sensors with the Atacms and PrSM batteries is necessary. Moreover, the Army will need to adapt command and control procedures to an unfamiliar maritime domain. The annual Project Convergence events offer a laboratory for the Army to prepare the targeting and command and control complex before new weapons enter service. With the Long-Range Hypersonic Weapon, a medium-range ballistic missile and PrSM also set to enter service in the next three years, the Army is seeking to adapt quickly. Last month, the Army used the first prototype of the Tactical Intelligence Targeting Access Node ground station. An artificial intelligence (AI) program named Prometheus sifted through intelligence information to identify targets. Another AI algorithm called SHOT matched those targets to particular weapons with the appropriate range and destructive power. An underlying fire-control network, called the Advanced Field Artillery Data System, provided SHOT with the location and magazine status of each friendly weapon system. A process that would otherwise take minutes or even hours dwindled—in an experimental setting—to a few seconds. The first Project Convergence event last month focused on the Army's traditional mission against targets on land. The next event will seek to replicate that streamlined targeting process against ships possibly hundreds of miles away. These experiments are intended to help the Army familiarize itself with new tools in the command and control loop, such as automated target-recognition systems and targeting assignments. The event also helps the Army dramatically adapt, in a few years, institutional practices that had endured for decades. “In order for a bureaucracy to change, [it has] to understand the need, and we have to create the use case in order for a bureaucracy to change,” says Gen. Mike Murray, the head of the Army Futures Command. “I think in Project Convergence, what we're able to demonstrate to the senior leaders in the army will further help drive that change.” In a way, the Army is seeking to achieve in the maritime domain a networked sensor and command and control system that the Navy introduced to its fleet nearly two decades ago. To improve the fleet air-defense mission substantially, the Navy's Cooperative Engagement Capability (CEC) generally develops a common, shared database of tracks from the multiple airborne, surface and subsurface sensors available to a carrier battle group. But the Navy also is building on the CEC standard. In 2016, a Lockheed F-35B demonstrated the ability to develop a target track of an over-the-horizon enemy warship. The track information was sent via the CEC to a launcher for a Raytheon SM-6. Although primarily an air- and missile-defense interceptor, in this case the SM-6 demonstrated an anti-ship role. A follow-on development SM-6 Block 1B is expected to optimize the weapon system as a long-range, anti-ship ballistic missile with hypersonic speed. More recently, the Navy has been quietly experimenting with its own series of Project Convergence-like experiments. Known as the Navy Tactical Grid experiments, the Navy and Marine Corps organized a series of demonstrations in fiscal 2019, according to the latest budget justification documents. Building on the common operating picture provided by the CEC, the Navy Tactical Grid is possibly experimenting with similar automation and machine-learning algorithms to streamline and amplify the targeting cycle dramatically. A new initiative is now replacing the Navy Tactical Grid experiments. Chief of Naval Operations Adm. Michael Gilday tapped Rear Adm. Douglas Small, the head of Naval Information Warfare Systems Command, to lead the effort known as Project Overmatch. Small must provide a strategy, no later than early December, that outlines how the Navy will develop the networks, infrastructure, data architecture, tools and analytics to support the operational force. This includes linking hundreds of ships, submarines, unmanned systems and aircraft. “Beyond recapitalizing our undersea nuclear deterrent, there is no higher developmental priority in the U.S. Navy,” Gilday wrote in an Oct. 1 memo that revealed the existence of Project Overmatch. Aviation Week obtained a copy of the document. “I am confident that closing this risk is dependent on enhancing Distributed Maritime Operations through a teamed manned-unmanned force that exploits artificial intelligence and machine learning.” While Small is tasked with creating the “connective tissue,” Gilday directs Vice Adm. James Kilby, deputy chief of naval operations for warfighting requirements and capabilities (N9), with accelerating development of unmanned capabilities and long-range fires, Gilday wrote in a separate Oct. 1 memo outlining the details of Project Overmatch. Kilby's assessment must include a metric for the Navy to measure progress and a strategy that appropriately funds each component. His initial plan is also due to Gilday in early December. “Drive coherence to our plans with a long-term, sustainable [and] affordable view that extends far beyond the [future years defense plan],” Gilday wrote. https://aviationweek.com/defense-space/missile-defense-weapons/us-army-flexes-new-land-based-anti-ship-capabilities

Toutes les nouvelles